Abstract

We demonstrate compact tunable phased-array wavelength-division multiplexers driven by surface acoustic waves (SAWs) in the low GHz range. The devices comprise two couplers, which respectively split and combine the optical signal, linked by an array of single-mode waveguides (WGs). Two different layouts are presented, in which multi-mode interference couplers or free propagating regions were separately employed as couplers. The multiplexers operate on five equally distributed wavelength channels, with a spectral separation of 2 nm. A standing SAW modulates the refractive index of the arrayed WGs. Each wavelength component periodically switches paths between the output channel previously asigned by the design and the adjacent channels, at a fixed applied acoustic power. The devices were monolithically fabricated on (Al,Ga)As. A good agreement between theory and experiment is achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable photonic routers based on multimode interference couplers

A. Crespo-Poveda, A. Cantarero, and M. M. de Lima
J. Opt. Soc. Am. B 33(1) 81-89 (2016)

Design of phased-array wavelength division multiplexers using multimode interference couplers

Mohammad R. Paiam and Robert I. MacDonald
Appl. Opt. 36(21) 5097-5108 (1997)

Synchronized photonic modulators driven by surface acoustic waves

A. Crespo-Poveda, R. Hey, K. Biermann, A. Tahraoui, P. V. Santos, B. Gargallo, P. Muñoz, A. Cantarero, and M. M. de Lima
Opt. Express 21(18) 21669-21676 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network on chip design (Springer, 2014).
    [Crossref]
  2. J. M. Simmons, Optical network design and planning (Springer, 2008).
  3. C. Dragone, “An N × N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
    [Crossref]
  4. H. Takahashi, O. Kazuhiro, T. Hiroma, and I. Yasuyuki, “Transmission characteristics of arrayed waveguide N X N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
    [Crossref]
  5. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices : principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [Crossref]
  6. P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightwave Technol. 20, 661–674 (2002).
    [Crossref]
  7. Chin-Lin Chen, Foundations for guided-wave optics (John Wiley & Sons, 2007).
  8. M. R. Paiam and R. I. Macdonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36, 5097–5108 (1997).
    [Crossref] [PubMed]
  9. S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929 (2001).
    [Crossref]
  10. G. A. Wurtz, R. Pollard, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
    [Crossref] [PubMed]
  11. X. Li, H. Xu, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction,” Opt. Lett. 39, 751–753 (2014).
    [Crossref] [PubMed]
  12. M. Ishii, Y. Hibino, F. Hanawa, H. Nakagome, and K. Kato., “Packaging and environmental stability of thermally controlled arrayed-waveguide grating multiplexer module with thermoelectric device,” J. Lightwave Technol. 16, 258–264 (1998).
    [Crossref]
  13. T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, “Polymeric optical waveguide circuits formed using silicone Resin,” J. Lightwave Technol. 16, 1049–1055 (1998).
    [Crossref]
  14. G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Z. Zhang, and C. P. Grover, “Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings,” Opt. Lett. 29, 2222–2224 (2004).
    [Crossref] [PubMed]
  15. M. R. Paiam, Applications of multimode interference couplers in wavelength-division multiplexing (University of Alberta, 1997).
  16. N. S. Lagali, The generalized Mach-Zehnder interferometer using multimode interference couplers for optical communications networks (University of Alberta, 2000).
  17. R. Stabile, A. Rohit, and K. A. Williams, “Monolithically integrated 8 × 8 space and wavelength selective cross-connect,” J. Lightwave Technol. 32, 201–207 (2014).
    [Crossref]
  18. K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” in OptoElectronics and Communications Conference (OECC), 2010 15th, July2010, 540–542.
  19. M. Hashimoto, H. Asakura, K. Nashimoto, H. Tsuda, and D. Kudzuma, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
    [Crossref]
  20. C. Gorecki, F. Chollet, E. Bonnotte, and H. Kawakatsu, “Silicon-based integrated interferometer with phase modulation driven by surface acoustic waves,” Opt. Lett. 22, 1784–1786 (1997).
    [Crossref]
  21. M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
    [Crossref]
  22. M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett. 91, 061118 (2007).
    [Crossref]
  23. M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys. 103, 014505 (2008).
    [Crossref]
  24. A. Crespo-Poveda, R. Hey, K. Biermann, A. Tahraoui, P. V. Santos, B. Gargallo, P. Muñoz, A. Cantarero, and M. M. de Lima, “Synchronized photonic modulators driven by surface acoustic waves,” Opt. Express 21, 21669 (2013).
    [Crossref] [PubMed]
  25. J. C. Capmany, P. Muñoz, M. M. de Lima, and P. V. Santos, “Tunable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977, May4, A1 (2012).
  26. M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
    [Crossref]
  27. N. S. Lagali, M. R. Paiam, and R. I. Macdonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
    [Crossref]
  28. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [Crossref]
  29. M. T. Hill, X. J. M. Leijtens, G. D. Khoe, and M. K. Smit, “Optimizing imbalance and loss in 2 × 2 3-dB multimode interference couplers via access waveguide width,” J. Lightwave Technol. 21, 2305–2313 (2003).
    [Crossref]
  30. A detailed description of the calculation procedure for the general case of N arms will be published elsewhere.
  31. D. Marcuse, “Length optimization of an S-shaped transition between offset optical waveguides,” Appl. Opt. 17, 763–768 (1978).
    [Crossref] [PubMed]
  32. M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848 (2003).
    [Crossref]

2014 (2)

2013 (1)

2012 (1)

M. Hashimoto, H. Asakura, K. Nashimoto, H. Tsuda, and D. Kudzuma, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

2011 (1)

G. A. Wurtz, R. Pollard, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

2008 (1)

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys. 103, 014505 (2008).
[Crossref]

2007 (1)

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett. 91, 061118 (2007).
[Crossref]

2006 (1)

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

2005 (1)

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

2004 (1)

2003 (2)

M. T. Hill, X. J. M. Leijtens, G. D. Khoe, and M. K. Smit, “Optimizing imbalance and loss in 2 × 2 3-dB multimode interference couplers via access waveguide width,” J. Lightwave Technol. 21, 2305–2313 (2003).
[Crossref]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848 (2003).
[Crossref]

2002 (1)

2001 (1)

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929 (2001).
[Crossref]

1999 (1)

N. S. Lagali, M. R. Paiam, and R. I. Macdonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[Crossref]

1998 (2)

1997 (2)

1996 (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices : principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

1995 (2)

H. Takahashi, O. Kazuhiro, T. Hiroma, and I. Yasuyuki, “Transmission characteristics of arrayed waveguide N X N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

1991 (1)

C. Dragone, “An N × N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
[Crossref]

1978 (1)

Alsina, F.

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848 (2003).
[Crossref]

Asakura, H.

M. Hashimoto, H. Asakura, K. Nashimoto, H. Tsuda, and D. Kudzuma, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

Beck, M.

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys. 103, 014505 (2008).
[Crossref]

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett. 91, 061118 (2007).
[Crossref]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

Bergman, K.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network on chip design (Springer, 2014).
[Crossref]

Biberman, A.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network on chip design (Springer, 2014).
[Crossref]

Biermann, K.

Bonnotte, E.

Cantarero, A.

Capmany, J.

Capmany, J. C.

J. C. Capmany, P. Muñoz, M. M. de Lima, and P. V. Santos, “Tunable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977, May4, A1 (2012).

Carloni, L. P.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network on chip design (Springer, 2014).
[Crossref]

Chan, J.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network on chip design (Springer, 2014).
[Crossref]

Chen, Chin-Lin

Chin-Lin Chen, Foundations for guided-wave optics (John Wiley & Sons, 2007).

Chollet, F.

Crespo-Poveda, A.

de Lima, M. M.

A. Crespo-Poveda, R. Hey, K. Biermann, A. Tahraoui, P. V. Santos, B. Gargallo, P. Muñoz, A. Cantarero, and M. M. de Lima, “Synchronized photonic modulators driven by surface acoustic waves,” Opt. Express 21, 21669 (2013).
[Crossref] [PubMed]

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys. 103, 014505 (2008).
[Crossref]

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett. 91, 061118 (2007).
[Crossref]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848 (2003).
[Crossref]

J. C. Capmany, P. Muñoz, M. M. de Lima, and P. V. Santos, “Tunable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977, May4, A1 (2012).

Dragone, C.

C. Dragone, “An N × N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
[Crossref]

Gargallo, B.

Gorecki, C.

Gosztola, D. J.

G. A. Wurtz, R. Pollard, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Grover, C. P.

Han, H.

K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” in OptoElectronics and Communications Conference (OECC), 2010 15th, July2010, 540–542.

Hanawa, F.

Hashimoto, M.

M. Hashimoto, H. Asakura, K. Nashimoto, H. Tsuda, and D. Kudzuma, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

Hayashida, S.

Hendry, G.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network on chip design (Springer, 2014).
[Crossref]

Hey, R.

A. Crespo-Poveda, R. Hey, K. Biermann, A. Tahraoui, P. V. Santos, B. Gargallo, P. Muñoz, A. Cantarero, and M. M. de Lima, “Synchronized photonic modulators driven by surface acoustic waves,” Opt. Express 21, 21669 (2013).
[Crossref] [PubMed]

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett. 91, 061118 (2007).
[Crossref]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

Hibino, Y.

Hill, M. T.

Hiroma, T.

H. Takahashi, O. Kazuhiro, T. Hiroma, and I. Yasuyuki, “Transmission characteristics of arrayed waveguide N X N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Imamura, S.

Ishii, M.

Kato., K.

Kawakatsu, H.

Kazuhiro, O.

H. Takahashi, O. Kazuhiro, T. Hiroma, and I. Yasuyuki, “Transmission characteristics of arrayed waveguide N X N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Khoe, G. D.

Kudzuma, D.

M. Hashimoto, H. Asakura, K. Nashimoto, H. Tsuda, and D. Kudzuma, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” in OptoElectronics and Communications Conference (OECC), 2010 15th, July2010, 540–542.

Kurihara, T.

Lagali, N. S.

N. S. Lagali, M. R. Paiam, and R. I. Macdonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[Crossref]

N. S. Lagali, The generalized Mach-Zehnder interferometer using multimode interference couplers for optical communications networks (University of Alberta, 2000).

Leijtens, X. J. M.

Li, X.

Li, Z.

Lu, Z. G.

Macdonald, R. I.

N. S. Lagali, M. R. Paiam, and R. I. Macdonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[Crossref]

M. R. Paiam and R. I. Macdonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36, 5097–5108 (1997).
[Crossref] [PubMed]

Marcuse, D.

Muñoz, P.

Nakagome, H.

Nakamura, S.

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929 (2001).
[Crossref]

Nashimoto, K.

M. Hashimoto, H. Asakura, K. Nashimoto, H. Tsuda, and D. Kudzuma, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” in OptoElectronics and Communications Conference (OECC), 2010 15th, July2010, 540–542.

Ooba, N.

Paiam, M. R.

N. S. Lagali, M. R. Paiam, and R. I. Macdonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[Crossref]

M. R. Paiam and R. I. Macdonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36, 5097–5108 (1997).
[Crossref] [PubMed]

M. R. Paiam, Applications of multimode interference couplers in wavelength-division multiplexing (University of Alberta, 1997).

Pastor, D.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Pollard, R.

G. A. Wurtz, R. Pollard, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Rohit, A.

Santos, P. V.

A. Crespo-Poveda, R. Hey, K. Biermann, A. Tahraoui, P. V. Santos, B. Gargallo, P. Muñoz, A. Cantarero, and M. M. de Lima, “Synchronized photonic modulators driven by surface acoustic waves,” Opt. Express 21, 21669 (2013).
[Crossref] [PubMed]

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys. 103, 014505 (2008).
[Crossref]

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett. 91, 061118 (2007).
[Crossref]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848 (2003).
[Crossref]

J. C. Capmany, P. Muñoz, M. M. de Lima, and P. V. Santos, “Tunable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977, May4, A1 (2012).

Seidel, W.

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett. 91, 061118 (2007).
[Crossref]

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848 (2003).
[Crossref]

Simmons, J. M.

J. M. Simmons, Optical network design and planning (Springer, 2008).

Smit, M. K.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Stabile, R.

Sun, F. G.

Tahraoui, A.

Tajima, K.

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929 (2001).
[Crossref]

Takahashi, H.

H. Takahashi, O. Kazuhiro, T. Hiroma, and I. Yasuyuki, “Transmission characteristics of arrayed waveguide N X N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Tsuda, H.

M. Hashimoto, H. Asakura, K. Nashimoto, H. Tsuda, and D. Kudzuma, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

Ueno, Y.

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929 (2001).
[Crossref]

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices : principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Watanabe, T.

Wiebicke, E.

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett. 91, 061118 (2007).
[Crossref]

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Williams, K. A.

Wurtz, G. A.

G. A. Wurtz, R. Pollard, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Xiao, G. Z.

Xiao, X.

Xu, H.

Yasuyuki, I.

H. Takahashi, O. Kazuhiro, T. Hiroma, and I. Yasuyuki, “Transmission characteristics of arrayed waveguide N X N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Yu, J.

Yu, Y.

Zayats, A. V.

G. A. Wurtz, R. Pollard, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Zhang, Z.

Zhao, P.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929 (2001).
[Crossref]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

M. Beck, M. M. de Lima, E. Wiebicke, W. Seidel, R. Hey, and P. V. Santos, “Acousto-optical multiple interference switches,” Appl. Phys. Lett. 91, 061118 (2007).
[Crossref]

Electron. Lett. (1)

M. Hashimoto, H. Asakura, K. Nashimoto, H. Tsuda, and D. Kudzuma, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett. 48, 1009–1010 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices : principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. Dragone, “An N × N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
[Crossref]

N. S. Lagali, M. R. Paiam, and R. I. Macdonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
[Crossref]

J. Appl. Phys. (2)

M. M. de Lima, F. Alsina, W. Seidel, and P. V. Santos, “Focusing of surface-acoustic-wave fields on (100) GaAs surfaces,” J. Appl. Phys. 94, 7848 (2003).
[Crossref]

M. Beck, M. M. de Lima, and P. V. Santos, “Acousto-optical multiple interference devices,” J. Appl. Phys. 103, 014505 (2008).
[Crossref]

J. Lightwave Technol. (7)

Nat. Nanotechnol. (1)

G. A. Wurtz, R. Pollard, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Rep. Prog. Phys. (1)

M. M. de Lima and P. V. Santos, “Modulation of photonic structures by surface acoustic waves,” Rep. Prog. Phys. 68, 1639–1701 (2005).
[Crossref]

Other (8)

Chin-Lin Chen, Foundations for guided-wave optics (John Wiley & Sons, 2007).

J. C. Capmany, P. Muñoz, M. M. de Lima, and P. V. Santos, “Tunable AWG device for multiplexing and demultiplexing signals and method for tuning said device,” Patent Application WO 2012/152977, May4, A1 (2012).

M. R. Paiam, Applications of multimode interference couplers in wavelength-division multiplexing (University of Alberta, 1997).

N. S. Lagali, The generalized Mach-Zehnder interferometer using multimode interference couplers for optical communications networks (University of Alberta, 2000).

K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” in OptoElectronics and Communications Conference (OECC), 2010 15th, July2010, 540–542.

K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry, Photonic network on chip design (Springer, 2014).
[Crossref]

J. M. Simmons, Optical network design and planning (Springer, 2008).

A detailed description of the calculation procedure for the general case of N arms will be published elsewhere.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Illustration (not to scale) of the acoustically driven wavelength-division multiplexers, fabricated on (Al,Ga)As. The light is coupled into an input channel (Input WGs) by means of a optical fibre probe. The passive components consist of a splitter and combiner couplers (Coupler 1 and Coupler 2, respectively) linked by an array of single-mode waveguides (Arrayed WGs). These arrayed WGs are modulated by a standing surface acoustic wave (SAW) generated by two interdigital transducers (IDTs), that dynamically modifies the output channel corresponding to a given optical wavelength.
Fig. 2
Fig. 2 Relative WG spacings with respect to the standing SAW nodes and anti-nodes, depicted at two different instants along the SAW beating period for the fabricated five WGs FPRs-based WDM device, where 〈κ1,..., κ5〉 = 〈∓1, ∓1/2, 0, ±1/2, ±1〉. The vertical black boxes indicate the WGs positions. (b) Layout of the devices, where the reference WG is the first arm (m = 1). In this configuration, the arrayed WGs bend through 180°, resulting in very compact devices.
Fig. 3
Fig. 3 (a) Relative waveguide spacings with respect to the standing SAW nodes and antinodes, depicted at two different instants along the SAW beating period for the fabricated five WGs MMIs-based devices, corresponding to solution S 3. The vertical black boxes indicate the WGs positions. (b) Layout of the fabricated acoustically driven MMIs-based phased-array WDM devices, where the reference WG is the first arm (m = 1).
Fig. 4
Fig. 4 Structure of the simulated (Al, Ga)As WGs (a), and simulated optical distribution of the fundamental TE mode, assuming W = 900 nm, and H = 150 nm (b).
Fig. 5
Fig. 5 Simulated results corresponding to the FPRs-based WDM device. (a) Spectral response corresponding to input waveguide i = 3. The response associated to other input waveguides has a similar transmission pattern. (b) Spectral response of the device calculated for i = 3, introducing a relative phase shift of 1.26 rad between adjacent arrayed WGs.
Fig. 6
Fig. 6 Simulated results corresponding to the MMIs-based WDM device. (a) Spectral response corresponding to input waveguide i = m = 1. The response associated to other input waveguides has a similar transmission pattern. (b) Spectral response of the devices corresponding to S 3, calculated at the output plane of the device as a function of the applied effective refractive index modulation for the route (i, k) = (1, 1).
Fig. 7
Fig. 7 (a) Top view micrograph of the fabricated FPRs-based WDM device, and detail of the modulated region (b), where D ≃ 6.53 μm. (c) Top view micrograph of the fabricated MMIs-based WDM devices corresponding to S 3, and detail of the modulated region of the multiplexer (d). The values of the different D(j,j′) are given in the text.
Fig. 8
Fig. 8 Diagram showing the setup used to measure the time response of the light transmission through the devices. A 20× objective with focal plane located at the edge of the sample collects the light from the OWGs. A polarizer is used to filter the TE or the TM modes. A single-mode fiber placed at the image plane selects the light from one of the output WGs. The static response of the device was measured using a CCD camera placed after a monochromator (Spec.). The time-resolved traces were recorded using a photomultiplier tube (MCP-PMT) or an avalanche photodiode (APD) synchronized with the RF signal that generates the SAWs. In order to obtain synchronization, the signal from the RF generator (RF gen.) is sent to a splitter (spl.) in a way that 50% of the signal has its frequency divided by 10. This is necessary to keep the trigger within the operational frequency range of the time-correlated single photon counting (TCSPC) module. The other half of the signal goes through a controllable attenuator (Step att.), a fixed-gain amplifier (Ampl.), and then is again split to drive the interdigital transducers. A phase shifter is used to control the relative phase between the IDTs. A second step attenuator is used to compensate for the insertion losses through the phase shifter.
Fig. 9
Fig. 9 (a) Measured spectral response of a FPRs-based WDM device corresponding to input waveguide i = 3 for light with TE polarization. The measurements are normalized to the transmission of a straight WG. (b) Measured spectral response of a MMIs-based WDM device corresponding to input waveguide i = m = 1 for light with TE polarization. The other input channels have similar transmissions.
Fig. 10
Fig. 10 Time-resolved measurements recorded for the light leaving the OCs of the MMIs-based devices corresponding to S 3, measured for λ = 916.6 nm, i = 1, and TE polarization. The different traces correspond to RF powers of: (a) PIDT = 79.4 nW, (b) PIDT = 6.3 mW, (c) PIDT = 39.8 mW, and (d) PIDT = 79.4 mW on each IDT.
Fig. 11
Fig. 11 (a) Time-resolved traces recorded using a MCP-PMT for the FPRs-based device for PIDT ∼ 80 mW on each IDT, measured for λ = 899 nm, and TE polarization. (b) Simulated results of the same device, assuming δneff = ±1.50 × 10−3, which corresponds to Λ ≈ ±1. The access WG corresponds in both cases to i = 3. Only one acoustic period is shown.
Fig. 12
Fig. 12 (a) Time-resolved traces recorded using a MCP-PMT for the MMIs-based device corresponding to S 3 for PIDT ∼ 80 mW on each IDT, measured for λ = 899 nm, and TE polarization. (b) Guided-mode propagation analysis simulations of the same device, assuming δneff = ±2.80 × 10−3, which corresponds to Λ ≈ ±1. The access WG corresponds in both cases to i = 2. Only one acoustic period is shown.

Tables (2)

Tables Icon

Table 1 Wavelength assignment of a five-channel MMI-phasar multiplexer calculated for S ′ and S ″ taking m = 1 as the reference arm, for the passive device (upper table), and different values of Λ. The same wavelength assignment is obtained for both sets of solutions, incrementing the effective index change by a different Λ.

Tables Icon

Table 2 Calculated array arm factors, 〈κj〉, for a 5 × 5 device. The different 〈κj〉 can be classified into two main sets, S ′ and S ″. The numbering of the different sets indicates the position of the acoustic node in the 〈κj〉.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

| δ Φ | = ( 2 π / λ ) | δ n eff | = a p P IDT
n eff ( j ) = n eff 0 + κ j | δ n eff | cos ( ω SAW t )
j = m + Δ ( j 1 ) for j = 1 , , N
2 π λ ( n eff Δ + n r d sin θ ) = 2 n π
θ ( λ ) ( n eff Δ n r d ) [ ( λ λ 0 ) ( n eff 0 n eff ) 1 ]
2 π λ [ n eff Δ + n r d sin θ + ( κ j + 1 κ j ) | δ n eff | e cos ( ω SAW t ) ] = 2 n π
θ SAW ( λ ) ( n eff Δ n r d ) [ ( λ λ 0 ) ( n eff 0 n eff ) 1 ] + δ θ SAW ( λ )
θ SAW ( λ ) = θ ( λ ) + δ θ SAW ( λ )
L c = P N ( 3 L π )
2 π λ [ n eff 0 ( j m ) n eff 0 α j Δ ] = 2 n π for j = 1 , , N
2 π λ [ n eff 0 ( j s j ) n eff c ( R ) c j ] = 2 n π for j = 1 , , N

Metrics