Abstract

A new calibration method for pure rotational Raman lidar temperature measurement is described in this work. The method forms a temperature-dependent term in the intensity ratio, which is calculable with the radiosonde data, and then derives a calibration factor, with which the temperature is retrievable from the lidar return. The method is demonstrated and compared with existing methods through simulations and experiments. Results of the comparison show that the proposed method could provide more accurate calibrations under low signal-to-noise ratio conditions and could thus reduce the lidar performance requirement for temperature retrieval.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-line-extracted pure rotational Raman lidar to measure atmospheric temperature and aerosol profiles

Miao Weng, Fan Yi, Fuchao Liu, Yunpeng Zhang, and Xiangliang Pan
Opt. Express 26(21) 27555-27571 (2018)

Optimized retrieval method for atmospheric temperature profiling based on rotational Raman lidar

Qing Yan, Yufeng Wang, Tianle Gao, Fei Gao, Huige Di, Yuehui Song, and Dengxin Hua
Appl. Opt. 58(19) 5170-5178 (2019)

Analytical calibration functions for the pure rotational Raman lidar technique

Vladislav V. Gerasimov and Vladimir V. Zuev
Opt. Express 24(5) 5136-5151 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11(1), 108–112 (1972).
    [Crossref]
  2. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32(15), 2758–2764 (1993).
    [Crossref] [PubMed]
  3. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
    [Crossref] [PubMed]
  4. P. Di Girolamo, R. Marchese, D. Whiteman, and B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
    [Crossref]
  5. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
    [Crossref]
  6. R. K. Newsom, D. D. Turner, and J. E. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30(8), 1616–1634 (2013).
    [Crossref]
  7. J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
    [Crossref]
  8. A. Behrendt, Temperature measurement with Lidar, in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (C. Weitkamp, 2005), Chap. 10.
  9. M. Montgomery and D. Odonoghue, “A derivation of the errors for least squares fitting to time series data,” Delta Scuti Star Newsletter 13, 28–32 (1999).
  10. C. Penney, R. St Peters, and M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64(5), 712–716 (1974).
    [Crossref]
  11. J. Bendtsen, “The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N and 15N2,” J. Raman Spectrosc. 2(2), 133–145 (1974).
    [Crossref]
  12. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22(19), 2984–2990 (1983).
    [Crossref] [PubMed]

2013 (2)

R. K. Newsom, D. D. Turner, and J. E. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30(8), 1616–1634 (2013).
[Crossref]

J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
[Crossref]

2008 (1)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

2004 (1)

P. Di Girolamo, R. Marchese, D. Whiteman, and B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

2000 (1)

1999 (1)

M. Montgomery and D. Odonoghue, “A derivation of the errors for least squares fitting to time series data,” Delta Scuti Star Newsletter 13, 28–32 (1999).

1993 (1)

1983 (1)

1974 (2)

J. Bendtsen, “The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N and 15N2,” J. Raman Spectrosc. 2(2), 133–145 (1974).
[Crossref]

C. Penney, R. St Peters, and M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64(5), 712–716 (1974).
[Crossref]

1972 (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11(1), 108–112 (1972).
[Crossref]

Arshinov, Y. F.

Behrendt, A.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
[Crossref] [PubMed]

Bendtsen, J.

J. Bendtsen, “The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N and 15N2,” J. Raman Spectrosc. 2(2), 133–145 (1974).
[Crossref]

Bobrovnikov, S. M.

Cooney, J.

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11(1), 108–112 (1972).
[Crossref]

Demoz, B.

P. Di Girolamo, R. Marchese, D. Whiteman, and B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Di Girolamo, P.

P. Di Girolamo, R. Marchese, D. Whiteman, and B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Goldsmith, J. E.

R. K. Newsom, D. D. Turner, and J. E. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30(8), 1616–1634 (2013).
[Crossref]

Lapp, M.

Leavor, K. R.

J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
[Crossref]

Lee, R. B.

J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
[Crossref]

Lei, L. Q.

J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
[Crossref]

Liu, Z. Y.

J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
[Crossref]

Marchese, R.

P. Di Girolamo, R. Marchese, D. Whiteman, and B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

McCormick, M. P.

J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
[Crossref]

Mitev, V.

Mitev, V. M.

Montgomery, M.

M. Montgomery and D. Odonoghue, “A derivation of the errors for least squares fitting to time series data,” Delta Scuti Star Newsletter 13, 28–32 (1999).

Newsom, R. K.

R. K. Newsom, D. D. Turner, and J. E. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30(8), 1616–1634 (2013).
[Crossref]

Odonoghue, D.

M. Montgomery and D. Odonoghue, “A derivation of the errors for least squares fitting to time series data,” Delta Scuti Star Newsletter 13, 28–32 (1999).

Penney, C.

Pepler, S. J.

Radlach, M.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

Reichardt, J.

St Peters, R.

Su, J.

J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
[Crossref]

Thomas, L.

Turner, D. D.

R. K. Newsom, D. D. Turner, and J. E. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30(8), 1616–1634 (2013).
[Crossref]

Vaughan, G.

Wareing, D. P.

Whiteman, D.

P. Di Girolamo, R. Marchese, D. Whiteman, and B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Wu, Y. H.

J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
[Crossref]

Wulfmeyer, V.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

Zuev, V. E.

Appl. Opt. (3)

Atmos. Chem. Phys. (1)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

Delta Scuti Star Newsletter (1)

M. Montgomery and D. Odonoghue, “A derivation of the errors for least squares fitting to time series data,” Delta Scuti Star Newsletter 13, 28–32 (1999).

Geophys. Res. Lett. (1)

P. Di Girolamo, R. Marchese, D. Whiteman, and B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

J. Appl. Meteorol. (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11(1), 108–112 (1972).
[Crossref]

J. Atmos. Ocean. Technol. (1)

R. K. Newsom, D. D. Turner, and J. E. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30(8), 1616–1634 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

J. Su, M. P. McCormick, Y. H. Wu, R. B. Lee, L. Q. Lei, Z. Y. Liu, and K. R. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quant. Spectrosc. Radiat. Transf. 125, 45–50 (2013).
[Crossref]

J. Raman Spectrosc. (1)

J. Bendtsen, “The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N and 15N2,” J. Raman Spectrosc. 2(2), 133–145 (1974).
[Crossref]

Other (1)

A. Behrendt, Temperature measurement with Lidar, in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere (C. Weitkamp, 2005), Chap. 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Calculated PRR differential backscatter cross section versus wavelength for N2 and O2 together with the polychromator transmission curves of the high-J and low-J channels for both the Stokes and anti-Stokes PRR returns.
Fig. 2
Fig. 2 (a) Raw signal intensity ratio used for calibration in the simulation; (b) profile of S N 2 J H/L calculated from the temperature profile of the US Standard Atmosphere.
Fig. 3
Fig. 3 X value profiles: raw profile obtained with the intensity ratio shown in Fig. 2(a), the true profile as a reference obtained without consideration of noise, and the determined profile obtained via the two calibration points.
Fig. 4
Fig. 4 Temperature retrieval results obtained with the new method, the second-order fitting and the linear fitting methods under (a) normal atmosphere, (b) atmosphere with high ground surface temperature, and (c) atmosphere with a temperature inversion layer, with the retrieval errors compared with the radiosonde data. The signal intensity ratios are smoothed with a gliding average of 300 m before being used in the retrieval.
Fig. 5
Fig. 5 Calibration and temperature retrieval results obtained with the first-order exponential fitting method and the second-order exponential fitting method. In the calibration, laser pulse energies of (a) 60 mJ, (b) 120 mJ, (c) 240 mJ and (d) 480 mJ are respectively used for the signal generation. The signal intensity ratios are smoothed with a gliding average of 300 m before being used for the temperature retrieval.
Fig. 6
Fig. 6 (a) Sensitivity of temperature measurement to the uncertainty of X; (b) absolute uncertainties of temperature measurement caused by the determination error of X at 305 K, 295 K, 280 K, 260 K, and 235 K.
Fig. 7
Fig. 7 Mean and standard deviation of the mean absolute error (MAE) of the temperature retrieved using the new method, the second-order fitting and the linear fitting methods for the height range of (a) 0 m to 3,000 m and (b) 0 m to 1,500 m. The integration time from 2 min to 8 min is for the lidar signal used in the calibration.
Fig. 8
Fig. 8 (a) Raw signal intensity ratio on the night of 17 March 2014 with an integration time of 20 min; (b) raw X value profile obtained with the intensity ratio of (a), and the determined profile obtained through the two calibration points which correspond to the altitude ranges of 1,000 m to 2,000 m and 2,000 m to 3,500 m.
Fig. 9
Fig. 9 Temperature profiles of the following three nights after the calibration: retrieval results obtained with the new method, the second-order fitting and the linear fitting methods, and the radiosonde temperature data. The profiles are represented as mean values of 300 m range bins from altitude of 500 m to 2,000 m.

Tables (1)

Tables Icon

Table 1 Major Specifications of the Simulated PRR Lidar System

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N PRR (T,z)= N 0 AηΔz z 2 n(z)[ i= N 2 , O 2 J i p i τ RR ( J i ) F i ( J i ,T ) ( dσ dΩ ) π RR,i ( J i ) ]τ (z) 2
F i ( J i ,T )= 2hc B 0,i (2 I i +1) 2 kT ( 2 J i +1 ) g i ( J i )exp[ J i ( J i +1)hc B 0,i kT ]
R( T,z )= N PRR hiJ (T,z) N PRR loJ (T,z) = i= N 2 , O 2 hi J i p i τ RR hiJ ( J i ) F i ( J i ,T ) ( dσ dΩ ) π RR,i ( J i ) i= N 2 , O 2 lo J i p i τ RR loJ ( J i ) F i ( J i ,T ) ( dσ dΩ ) π RR,i ( J i )
R( T )= S N 2 J H/L ( T )X = F N 2 ( J H ,T ) F N 2 ( J L ,T ) i= N 2 , O 2 hi J i p i τ RR hiJ ( J i ) F i ( J i ,T ) F N 2 ( J H ,T ) ( dσ dΩ ) π RR,i ( J i ) i= N 2 , O 2 lo J i p i τ RR loJ ( J i ) F i ( J i ,T ) F N 2 ( J L ,T ) ( dσ dΩ ) π RR,i ( J i )
S N 2 J H/L ( T )= F N 2 ( J H ,T ) F N 2 ( J L ,T ) , X= i= N 2 , O 2 hi J i p i τ RR hiJ ( J i ) F i ( J i ,T ) F N 2 ( J H ,T ) ( dσ dΩ ) π RR,i ( J i ) i= N 2 , O 2 lo J i p i τ RR loJ ( J i ) F i ( J i ,T ) F N 2 ( J L ,T ) ( dσ dΩ ) π RR,i ( J i ) .
S N 2 J H/L = 2 J H +1 2 J L +1 g N 2 ( J H ) g N 2 ( J L ) exp[ J H ( J H +1 ) J L ( J L +1 ) kT hc B 0, N 2 ]
X= N PRR hiJ (T,z) N PRR loJ (T,z) 1 S N 2 J H/L ( T ) .
X'(z)=X( z X )+ z m X
z X = T sur0 T sur γ .
T= J L ( J L +1 ) J H ( J H +1 ) k ln 1 [ R X 2 J L +1 2 J H +1 g N 2 ( J L ) g N 2 ( J H ) ]hc B 0, N 2 .
dT= J L ( J L +1 ) J H ( J H +1 ) k ln 2 [ R X 2 J L +1 2 J H +1 g N 2 ( J L ) g N 2 ( J H ) ]hc B 0, N 2 dX X .
R( T )=exp( a 1 T + b 1 )
R( T )=exp( a 2 T 2 + b 2 T + c 2 )

Metrics