Abstract

We demonstrate strong modulation of the transmission around the surface plasmon polariton (SPP) resonance in metal/semiconductor hybrid nanostructures based on Ag film on top of InGaAs. The change in the real and imaginary parts of the refractive index due to photoexcited carriers in InGaAs generates a shift in the SPP resonance and enhanced transmission near the SPP resonance. Temporal evolution of the complex refractive index was traced by comparing the transient transmission with finite-difference time-domain (FDTD) simulations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral dependence of the magnetic modulation of surface plasmon polaritons in permalloy/noble metal films

V. G. Kravets, P. Yu. Kurioz, and L. V. Poperenko
J. Opt. Soc. Am. B 31(8) 1836-1844 (2014)

Surface plasmon polaritons at linearly graded semiconductor interfaces

D. Blazek, M. Cada, and J. Pistora
Opt. Express 23(5) 6264-6276 (2015)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  4. J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
    [Crossref]
  5. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  6. A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
    [Crossref]
  7. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
    [Crossref]
  8. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
    [Crossref] [PubMed]
  9. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
    [Crossref]
  10. N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80(24), 245420 (2009).
    [Crossref]
  11. A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express 18(22), 23226–23235 (2010).
    [Crossref] [PubMed]
  12. T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett. 104(11), 113903 (2010).
    [Crossref] [PubMed]
  13. A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
    [Crossref]
  14. N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast control of grating-assisted light coupling to surface plasmons,” Opt. Lett. 33(18), 2137–2139 (2008).
    [Crossref] [PubMed]
  15. J. Suh, E. Donev, R. Lopez, L. Feldman, and R. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
    [Crossref]
  16. M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [Crossref] [PubMed]
  17. D. Miller, C. Seaton, M. Prise, and S. Smith, “Band-gap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47(3), 197–200 (1981).
    [Crossref]
  18. D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
    [Crossref] [PubMed]
  19. S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
    [Crossref]
  20. S. Adachi, Physical Properties of III–V Semiconductor Compounds (John Wiley and Sons, 1992).
  21. A. Christ, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
    [Crossref]
  22. H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
    [Crossref]

2014 (1)

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

2013 (1)

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

2011 (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

2010 (3)

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett. 104(11), 113903 (2010).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express 18(22), 23226–23235 (2010).
[Crossref] [PubMed]

2009 (2)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80(24), 245420 (2009).
[Crossref]

2008 (2)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast control of grating-assisted light coupling to surface plasmons,” Opt. Lett. 33(18), 2137–2139 (2008).
[Crossref] [PubMed]

2007 (2)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

2006 (1)

J. Suh, E. Donev, R. Lopez, L. Feldman, and R. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

2004 (2)

A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

A. Christ, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1992 (1)

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

1985 (1)

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[Crossref] [PubMed]

1981 (1)

D. Miller, C. Seaton, M. Prise, and S. Smith, “Band-gap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47(3), 197–200 (1981).
[Crossref]

Ahn, K.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Berrier, A.

Betz, M.

Biancalana, F.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Bonn, M.

A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express 18(22), 23226–23235 (2010).
[Crossref] [PubMed]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Burkhard, H.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Burrus, C. A.

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[Crossref] [PubMed]

Caspers, J. N.

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80(24), 245420 (2009).
[Crossref]

Chang, W.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Chemla, D. S.

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[Crossref] [PubMed]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Christ, A.

A. Christ, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Chulkov, E.

J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Conforti, M.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Damen, T. C.

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[Crossref] [PubMed]

Della Valle, G.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dinges, H. W.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Donev, E.

J. Suh, E. Donev, R. Lopez, L. Feldman, and R. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Echenique, P.

J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Feldman, L.

J. Suh, E. Donev, R. Lopez, L. Feldman, and R. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Ghaemi, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett. 104(11), 113903 (2010).
[Crossref] [PubMed]

A. Christ, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Gippius, N.

A. Christ, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Gossard, A. C.

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[Crossref] [PubMed]

Haglund, R.

J. Suh, E. Donev, R. Lopez, L. Feldman, and R. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Heberle, A. P.

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett. 104(11), 113903 (2010).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Kim, D. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, G.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Kim, H.-S.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H.-T.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, J.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Kim, S.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Krasavin, A. V.

A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

Kuhl, J.

A. Christ, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Lee, C.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Lee, H. W.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Lezec, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

Lippitz, M.

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett. 104(11), 113903 (2010).
[Crossref] [PubMed]

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Longhi, S.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Lopez, R.

J. Suh, E. Donev, R. Lopez, L. Feldman, and R. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Lösch, R.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Marini, A.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Miller, D.

D. Miller, C. Seaton, M. Prise, and S. Smith, “Band-gap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47(3), 197–200 (1981).
[Crossref]

Miller, D. A.

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[Crossref] [PubMed]

Nickel, H.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Noh, S.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

Park, D.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Pitarke, J.

J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Prise, M.

D. Miller, C. Seaton, M. Prise, and S. Smith, “Band-gap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47(3), 197–200 (1981).
[Crossref]

Rivas, J. G.

A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express 18(22), 23226–23235 (2010).
[Crossref] [PubMed]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Rotenberg, N.

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80(24), 245420 (2009).
[Crossref]

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast control of grating-assisted light coupling to surface plasmons,” Opt. Lett. 33(18), 2137–2139 (2008).
[Crossref] [PubMed]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Schlapp, W.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Schmidt, M. A.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Seaton, C.

D. Miller, C. Seaton, M. Prise, and S. Smith, “Band-gap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47(3), 197–200 (1981).
[Crossref]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Silkin, V.

J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Sim, S.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Smith, S.

D. Miller, C. Seaton, M. Prise, and S. Smith, “Band-gap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47(3), 197–200 (1981).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

St J Russell, P.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Stockman, M. I.

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett. 104(11), 113903 (2010).
[Crossref] [PubMed]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Suh, J.

J. Suh, E. Donev, R. Lopez, L. Feldman, and R. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Thio, T.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tikhodeev, S.

A. Christ, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Tran, T. X.

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Ulbricht, R.

Utikal, T.

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett. 104(11), 113903 (2010).
[Crossref] [PubMed]

van Driel, H. M.

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80(24), 245420 (2009).
[Crossref]

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast control of grating-assisted light coupling to surface plasmons,” Opt. Lett. 33(18), 2137–2139 (2008).
[Crossref] [PubMed]

Wiegmann, W.

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[Crossref] [PubMed]

Wolff, P.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wood, T. H.

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[Crossref] [PubMed]

Yee, K.

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zentgraf, T.

A. Christ, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Zheludev, N.

A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Appl. Phys. B (1)

S. Kim, C. Lee, D. Park, S. Noh, S. Sim, J. Kim, G. Kim, K. Ahn, D. Kim, and K. Yee, “Evolution of surface plasmon resonance with slab thickness in hybrid nano-structures of Au/InGaAs slab waveguide,” Appl. Phys. B 115(1), 77–83 (2014).
[Crossref]

Appl. Phys. Lett. (2)

J. Suh, E. Donev, R. Lopez, L. Feldman, and R. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

Appl. Surf. Sci. (1)

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Nano Lett. (1)

M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[Crossref]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Nature (2)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

A. Marini, M. Conforti, G. Della Valle, H. W. Lee, T. X. Tran, W. Chang, M. A. Schmidt, S. Longhi, P. St J Russell, and F. Biancalana, “Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals,” New J. Phys. 15(1), 013033 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. B (2)

N. Rotenberg, J. N. Caspers, and H. M. van Driel, “Tunable ultrafast control of plasmonic coupling to gold films,” Phys. Rev. B 80(24), 245420 (2009).
[Crossref]

A. Christ, T. Zentgraf, J. Kuhl, S. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Phys. Rev. B Condens. Matter (1)

D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett. 104(11), 113903 (2010).
[Crossref] [PubMed]

D. Miller, C. Seaton, M. Prise, and S. Smith, “Band-gap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47(3), 197–200 (1981).
[Crossref]

Rep. Prog. Phys. (1)

J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Other (1)

S. Adachi, Physical Properties of III–V Semiconductor Compounds (John Wiley and Sons, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the time-resolved transmission measurements using 800 nm pump pulse and tunable probe pulse (1200–1600 nm). The sample is a one-dimensional slit array of silver with a period of 420 nm fabricated on top of 400-nm-thick InGaAs with InP substrate. (b) Transmission spectrum at normal incidence for the slit with a metal fill factor of 70%, which shows transmission dips at the resonant wavelengths of the waveguide mode and SPP as well as the transmission peak. (c, d, e) Field profile of Hy at the wavelength corresponding to (c) the waveguide mode, (d) transmission peak, and (e) the surface plasmon.
Fig. 2
Fig. 2 (a) Transmission spectra obtained at several time delays after pump pulse excitation with the shaded curve being the transmission spectrum at a negative time delay (τ = −30 ps). The arrows at each curve points to the transmission peak. (b) Wavelength and (c) transmission intensity at the transmission peak as a function of time delay.
Fig. 3
Fig. 3 FDTD simulation of the transmission spectrum at normal incidence obtained (a) while varying the real part and (b) while varying the imaginary part of the refractive index. The wavelength at the peak transmission shifts with the real part, and the transmission becomes pronounced when the imaginary value is reduced.
Fig. 4
Fig. 4 (a) Experimentally obtained transmission spectra at time delays τ = 7 ps and τ = −30 ps. (b) Reconstructed transmission spectra using FDTD simulation to match the transmission peak of the experiments. The complex refractive indices used for the simulation are denoted for each curve. (c) Real and imaginary refractive indices as functions of time delay—extracted by ascertaining the parameters that best simulate the transient transmission spectrum at each time delay.
Fig. 5
Fig. 5 The complex refractive index at each time delay after the pump pulse excitation is pointed in the X-Y plane with the horizontal (vertical) axis representing the real (imaginary) part of the refractive index.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ SPP = 2π k ε m ε d ε m + ε d
Δn(ω)= c π Pr Δα( ω ) ω 2 ω 2 d ω .

Metrics