Abstract

We experimentally demonstrated a metamaterial composed of hexagonal arrays of silver nanowires that exhibits hyperbolic dispersion and negative refraction in the entire visual wavelength range. The nanowires with extremely small size of 10 nm diameter and 15 nm center-to-center distance were fabricated using the reverse hexagonal liquid crystalline phase template containing AgNO3 solution. Through the experiments of angle dependent reflectance for s-polarization and p-polarization, the dielectric constants were measured in several wavelengths. Calculations and experiments both show hyperbolic dispersion relations from 370 nm to 750 nm which indicates the presence of all-angle negative refraction. For all the experimental wavelengths, the permittivities of the material are in good agreement with the theoretical calculations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toward curvilinear metamaterials based on silver-filled alumina templates [Invited]

Yu. A. Barnakov, N. Kiriy, P. Black, H. Li, A. V. Yakim, L. Gu, M. Mayy, E. E. Narimanov, and M. A. Noginov
Opt. Mater. Express 1(6) 1061-1064 (2011)

Hyperbolic metamaterial feasible for fabrication with direct laser writing processes

Xu Zhang, Sanjoy Debnath, and Durdu Ö. Güney
J. Opt. Soc. Am. B 32(6) 1013-1021 (2015)

Controlling hyperbolic metamaterials with a core-shell nanowire array [Invited]

V. Yu. Reshetnyak, I. P. Pinkevych, A. M. Urbas, and D. R. Evans
Opt. Mater. Express 7(2) 542-554 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Fisher and R. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22(21), 1093–1095 (1969).
    [Crossref]
  2. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [Crossref] [PubMed]
  3. Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
    [Crossref] [PubMed]
  4. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  6. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84(13), 2244–2246 (2004).
    [Crossref]
  7. C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
    [Crossref] [PubMed]
  8. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  9. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  10. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
    [Crossref] [PubMed]
  11. J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express 20(7), 8100–8116 (2012).
    [Crossref] [PubMed]
  12. H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  13. P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
    [Crossref]
  14. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
    [Crossref]
  15. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
    [Crossref]
  16. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks,” Opt. Express 15(2), 508–523 (2007).
    [Crossref] [PubMed]
  17. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
    [Crossref]
  18. S. Townsend, S. Zhou, and Q. Li, “Multiscale metamaterials: a new route to isotropic double-negative behaviour at visible frequencies,” Opt. Express 22(18), 21929–21937 (2014).
    [Crossref] [PubMed]
  19. J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
    [Crossref]
  20. M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial,” Nano Lett. 14(11), 6356–6360 (2014).
    [Crossref] [PubMed]
  21. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [Crossref] [PubMed]
  22. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  23. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  24. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
    [Crossref] [PubMed]
  25. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Engineering and Technology, 1999).
  26. P. Ekwall, L. Mandell, and K. Fontell, “Solubilization in micelles and mesophases and the transition from normal to reversed structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8, 157–213 (1969).
  27. L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, and Y. S. Yan, “Nanowire arrays electrodeposited from liquid crystalline phases,” Adv. Mater. 14(1), 61–64 (2002).
    [Crossref]
  28. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  29. M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
    [Crossref]
  30. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]
  31. K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
    [Crossref] [PubMed]
  32. J. Zhang, Y. Yan, X. Cao, and L. Zhang, “Microarrays of silver nanowires embedded in anodic alumina membrane templates: size dependence of polarization characteristics,” Appl. Opt. 45(2), 297–304 (2006).
    [Crossref] [PubMed]

2014 (3)

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial,” Nano Lett. 14(11), 6356–6360 (2014).
[Crossref] [PubMed]

S. Townsend, S. Zhou, and Q. Li, “Multiscale metamaterials: a new route to isotropic double-negative behaviour at visible frequencies,” Opt. Express 22(18), 21929–21937 (2014).
[Crossref] [PubMed]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express 20(7), 8100–8116 (2012).
[Crossref] [PubMed]

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

2011 (2)

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

2010 (2)

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

2009 (1)

M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

2008 (2)

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (5)

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

J. Zhang, Y. Yan, X. Cao, and L. Zhang, “Microarrays of silver nanowires embedded in anodic alumina membrane templates: size dependence of polarization characteristics,” Appl. Opt. 45(2), 297–304 (2006).
[Crossref] [PubMed]

2005 (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

2004 (1)

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84(13), 2244–2246 (2004).
[Crossref]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

2002 (1)

L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, and Y. S. Yan, “Nanowire arrays electrodeposited from liquid crystalline phases,” Adv. Mater. 14(1), 61–64 (2002).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1969 (2)

P. Ekwall, L. Mandell, and K. Fontell, “Solubilization in micelles and mesophases and the transition from normal to reversed structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8, 157–213 (1969).

R. Fisher and R. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22(21), 1093–1095 (1969).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Akozbek, N.

Alekseyev, L. V.

Atkinson, R.

P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
[Crossref]

Bao, K.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Barnakov, Y. A.

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Bloemer, M. J.

Boltasseva, A.

Bonner, C. E.

Bozhilov, K. N.

L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, and Y. S. Yan, “Nanowire arrays electrodeposited from liquid crystalline phases,” Adv. Mater. 14(1), 61–64 (2002).
[Crossref]

Cao, X.

Cappeddu, M. G.

Centini, M.

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Cheng, T.-Y.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, J.-Y.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

D’Aguanno, G.

de Ceglia, D.

Dickson, W.

P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
[Crossref]

Drachev, V. P.

Dryden, D.

Ekwall, P.

P. Ekwall, L. Mandell, and K. Fontell, “Solubilization in micelles and mesophases and the transition from normal to reversed structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8, 157–213 (1969).

Elser, J.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Evans, P.

P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
[Crossref]

Fang, Y.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Fisher, R.

R. Fisher and R. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22(21), 1093–1095 (1969).
[Crossref]

Fontell, K.

P. Ekwall, L. Mandell, and K. Fontell, “Solubilization in micelles and mesophases and the transition from normal to reversed structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8, 157–213 (1969).

Fowler, M.

Gould, R.

R. Fisher and R. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22(21), 1093–1095 (1969).
[Crossref]

Haus, J. W.

He, J.-H.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Hendren, W.

P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
[Crossref]

Huang, L. M.

L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, and Y. S. Yan, “Nanowire arrays electrodeposited from liquid crystalline phases,” Adv. Mater. 14(1), 61–64 (2002).
[Crossref]

Huang, Y.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jacob, Z.

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kang, F.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

Kim, J.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kolinko, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84(13), 2244–2246 (2004).
[Crossref]

Krasavin, A. V.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Kretzschmar, I.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Li, B.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

Li, H.

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Li, Q.

Li, Z.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[Crossref] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Luo, Y.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Maas, R.

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial,” Nano Lett. 14(11), 6356–6360 (2014).
[Crossref] [PubMed]

Mandatori, A.

Mandell, L.

P. Ekwall, L. Mandell, and K. Fontell, “Solubilization in micelles and mesophases and the transition from normal to reversed structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8, 157–213 (1969).

Maslovski, S.

Mattiucci, N.

Mayy, M.

Menon, V. M.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Mitra, A.

L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, and Y. S. Yan, “Nanowire arrays electrodeposited from liquid crystalline phases,” Adv. Mater. 14(1), 61–64 (2002).
[Crossref]

Mock, J. J.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84(13), 2244–2246 (2004).
[Crossref]

Naik, G. V.

Narimanov, E.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Narimanov, E. E.

Nataraj, G.

Nefedov, I.

Noginov, M.

M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Noginov, M. A.

Nordlander, P.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Podolskiy, V. A.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Pollard, R.

P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
[Crossref]

Polman, A.

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial,” Nano Lett. 14(11), 6356–6360 (2014).
[Crossref] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

Rho, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Rye, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84(13), 2244–2246 (2004).
[Crossref]

Scalora, M.

Schokker, H.

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial,” Nano Lett. 14(11), 6356–6360 (2014).
[Crossref] [PubMed]

Schurig, D.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84(13), 2244–2246 (2004).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Shalaev, V. M.

Sibilia, C.

Simovski, C.

Smith, D. R.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84(13), 2244–2246 (2004).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Sun, J.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

Townsend, S.

Tretyakov, S.

Tsai, K.-T.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Tumkur, T.

M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

van de Haar, M. A.

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial,” Nano Lett. 14(11), 6356–6360 (2014).
[Crossref] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Wang, H. T.

L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, and Y. S. Yan, “Nanowire arrays electrodeposited from liquid crystalline phases,” Adv. Mater. 14(1), 61–64 (2002).
[Crossref]

Wang, H.-H.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Wang, J.-K.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Wang, Y. L.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Wang, Z. B.

L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, and Y. S. Yan, “Nanowire arrays electrodeposited from liquid crystalline phases,” Adv. Mater. 14(1), 61–64 (2002).
[Crossref]

Wangberg, R.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Wells, B. M.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Wurtz, G.

P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
[Crossref]

Wurtz, G. A.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Xu, H.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Yan, Y.

Yan, Y. S.

L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, and Y. S. Yan, “Nanowire arrays electrodeposited from liquid crystalline phases,” Adv. Mater. 14(1), 61–64 (2002).
[Crossref]

Yang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Zayats, A.

P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
[Crossref]

Zayats, A. V.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Zhang, J.

Zhang, L.

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhou, J.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

Zhou, S.

Zhu, G.

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Adv. Mater. (1)

L. M. Huang, H. T. Wang, Z. B. Wang, A. Mitra, K. N. Bozhilov, and Y. S. Yan, “Nanowire arrays electrodeposited from liquid crystalline phases,” Adv. Mater. 14(1), 61–64 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84(13), 2244–2246 (2004).
[Crossref]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: Graphite,” Appl. Phys. Lett. 98(10), 101901 (2011).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

P. Ekwall, L. Mandell, and K. Fontell, “Solubilization in micelles and mesophases and the transition from normal to reversed structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 8, 157–213 (1969).

Nano Lett. (3)

M. A. van de Haar, R. Maas, H. Schokker, and A. Polman, “Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial,” Nano Lett. 14(11), 6356–6360 (2014).
[Crossref] [PubMed]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y. L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
[Crossref] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10(5), 1831–1835 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

P. Evans, W. Hendren, R. Atkinson, G. Wurtz, W. Dickson, A. Zayats, and R. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17(23), 5746–5753 (2006).
[Crossref]

Nat. Commun. (1)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

R. Fisher and R. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22(21), 1093–1095 (1969).
[Crossref]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

Science (4)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Other (1)

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Engineering and Technology, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Effective uniaxial metamaterial geometry of hexagonal silver nanowires array. The coordinate system is in the lower-left corner. The nanowires are parallel with Z axis.
Fig. 2
Fig. 2 The structure of AOT molecule and self-assembly alignment of reverse hexagonal liquid-crystalline phase during nanowire electrodeposition. (a) Aerosol OT (C20H37NaO7S) is an amphiphilic compound, which contains hydrophilic head (black dot) and hydrophobic tails (the two gray curves). W and O represent water phase and oil phase, respectively. In the Aerosol OT-xylene-water system, reversed hexagonal mesophase is formed in a special composition. The hydrophilic heads of Aerosol OT arrange inwardly contact with water, and the hydrophobic tails attach to the outside oil. (b) Schematic illustration of the silver nanowires electrodeposition. The narrowly separated electrodes create an electric field high enough to align the reverse hexagonal liquid crystal parallel to the electric field direction. The water phase is substituted by an aqueous 0.3 M AgNO3 solution in this experiment.
Fig. 3
Fig. 3 (a) The photograph of the nanowires sample. (Scale bar, 1mm) (b) Scanning electron micrographs of the material electrodeposited from AOT/p-xylene/H2O (0.3M AgNO3) reverse hexagonal liquid-crystalline phase. Silver appears as white parts surrounded by dark background, and the silver nanowires are arranged in hexagonal form (black line). The average diameter is about 10nm, nanowires spacing is about 15nm. (Scale bar, 10nm) (c) Energy dispersive X-ray of the sample. The elements consist C, O, S, Ag; the main component of the sample is Ag and the other elements can be attributed to the AOT left in the sample.
Fig. 4
Fig. 4 Experimental setup and reflectivity measurement results. (a) The photograph of the experiment setup. (b) The schematic of experimental setup used in the reflectance measurements. A half-wave plate and a polarizer are used to adjust the light intensity continuously. A polarizer is used to control the polarization state of the light. The sample is attached on the rotary stagy.(c) The relations between the reflectivity and the incident angle in s-polarization (red squares) and p-polarization (blue circles) at 532nm wavelength. The lines are fitting curves according to Eqs. (4) and (5) and the discrete dots are experimentally measured data. The fitting effective permittivities of the sample are ε// = −3.95 and ε = 2.96 respectively.
Fig. 5
Fig. 5 The calculated and experimentally measured effective permittivities of the sample. The red solid line is the real part of the permittivity perpendicular to the silver wires and the blue dotted line is the permittivity parallel to the wires, the two lines are calculated by solving the Maxwell-Garnett equations. For the red solid line, a resonant peak appears around 370 nm, and the values keep positive in the longer wavelength. To the contrary, the blue dotted line is negative in the whole 350 nm to 750 nm spectrum. The experimental results (ε red square and ε// blue circle) show the measured values from the reflectivity experiment at 410, 532, 633, 730 nm. The experiment data agree well with the calculated data.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω )= ε ω p 2 ω( ω+i γ c ) .
ε || = ε z =f ε m +(1f) ε d .
ε = ε x = ε y = ε d [ ( 1+f ) ε m +( 1f ) ε d ( 1f ) ε m +( 1+f ) ε d ].
R s = | r | 2 = | sin( θ i θ t ) sin( θ i + θ t ) | 2 , θ t =arcsin( sin θ i ε ).
R p = | r | 2 = | ε tan θ t tan θ i ε tan θ t +tan θ i | 2 , θ t =arctan ε // sin 2 θ i ε // ε ε sin 2 θ i .

Metrics