Abstract

In dynamic optical networking scenarios, it is desirable that the optical transmitter chooses the most suitable modulation format in order to achieve optimal transmission performance. Owing to the ability of switching among different modulation formats, flexible optical transmitters based on reconfigurable optical devices are becoming a key component for the implementation of future flexible optical networks. In this paper, we experimentally demonstrate a flexible 8-ary transmitter to achieve adaptive switching between 8-ary phase-shift keying (8PSK) and circular 8-ary quadrature-amplitude modulation (8QAM) through reconfiguration of two cascaded in-phase/quadrature (IQ) modulators with different driving signals and biasing conditions. An arbitrary binary quadrature-amplitude modulation (2QAM) with constant or non-constant amplitude is proposed and experimentally demonstrated using an IQ modulator. Then, optical 8PSK or 8QAM modulation formats are successfully synthesized when a standard squared QPSK modulator is cascaded with a constant-amplitude or non-constant-amplitude 2QAM, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rectangular QPSK for generation of optical eight-ary phase-shift keying

Guo-Wei Lu, Takahide Sakamoto, and Tetsuya Kawanishi
Opt. Express 19(19) 18479-18485 (2011)

Reconfigurable multilevel transmitter using monolithically integrated quad Mach-Zehnder IQ modulator for optical 16-QAM and 8-PSK generation

Guo-Wei Lu, Takahide Sakamoto, Akito Chiba, Tetsuya Kawanishi, Tetsuya Miyazaki, Kaoru Higuma, Masaaki Sudo, and Junichiro Ichikawa
Opt. Express 19(6) 5596-5601 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
    [Crossref]
  2. J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Opt. Fiber Technol. 15(3), 197–208 (2009).
    [Crossref]
  3. T. Sakamoto, A. Chiba, and T. Kawanishi, “Electro-optic synthesis of 8PSK by quad-parallel Mach-Zehnder modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuG4.
    [Crossref]
  4. Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.
  5. G.-W. Lu, T. Sakamoto, A. Chiba, T. Kawanishi, T. Miyazaki, K. Higuma, M. Sudo, and J. Ichikawa, “Reconfigurable multilevel transmitter using monolithically integrated quad Mach-Zehnder IQ modulator for optical 16-QAM and 8-PSK generation,” Opt. Express 19(6), 5596–5601 (2011).
    [Crossref] [PubMed]
  6. X. Zhou, J. Yu, and P. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” in Optical Fiber Communication Conference (Optical Society of America, 2009), pp. 1–3.
  7. N. Kikuchi and S. Sasaki, “Sensitivity improvement of incoherent multilevel (30-Gbit/s 8QAM and 40-Gbit/s 16QAM) signaling with non-euclidean metric and MSPE (multi symbol phase estimation),” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OWG1.
    [Crossref]
  8. J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
    [Crossref]
  9. J. Kahn, “Modulation and detection techniques for optical communication systems,” in Proceedings of Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications (Optical Society of America, 2006), paper CThC1.
    [Crossref]
  10. H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable optical modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” in 36th European Conference and Exhibition on Optical Communication (ECOC), Sep. 2010, pp. 1–3.
    [Crossref]
  11. T. Goh, H. Yamazaki, T. Kominato, and S. Mino, “Novel flexible-format optical modulator with selectable combinations of carrier numbers and modulation levels based on silica-PLC and LiNbO3 hybrid integration,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Mar. 2011, paper OWV2.
    [Crossref]
  12. T. Sakamoto and A. Chiba, “Coherent synthesis of optical multilevel signals by electrooptic digital-to-analog conversion using multiparallel modulator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1140–1149 (2010).
    [Crossref]
  13. G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Rectangular QPSK for generation of optical eight-ary phase-shift keying,” Opt. Express 19(19), 18479–18485 (2011).
    [Crossref] [PubMed]
  14. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
    [Crossref]
  15. H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Opt. Express 20(17), 18652–18658 (2012).
    [Crossref] [PubMed]
  16. Y.-K. Huang, E. Ip, P. N. Ji, Y. Shao, T. Wang, Y. Aono, Y. Yano, and T. Tajima, “Terabit/s optical superchannel with flexible modulation format for dynamic distance/route transmission,” in Optical Fiber Communication Conference. Optical Society of America, 2012, paper OM3H.4.
    [Crossref]
  17. T. Xia, G. A. Wellbrock, Y.-K. Huang, M.-F. Huang, E. Ip, P. N. Ji, D. Qian, A. Tanaka, Y. Shao, T. Wang, Y. Aono, and T. Tajima, “21.7 Tb/s field trial with 22 DP-8QAM/QPSK optical superchannels over 1,503-km of installed SSMF,” in Optical Fiber Communication Conference. Optical Society of America, 2012, paper PDP5D.6.
    [Crossref]
  18. G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express 18(22), 23062–23069 (2010).
    [Crossref] [PubMed]
  19. G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Reconfigurable optical 8-ary transmitter based on arbitrary 2-QAM for generating 8PSK and 8QAM,” in Optical Fiber Communication Conference. Optical Society of America, 2012, paper JTh2A.22.
    [Crossref]
  20. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  21. H. S. Chung, S. H. Chang, J. H. Lee, and K. Kim, “Field trial of automatic bias control scheme for optical IQ modulator and demodulator with directly detected 112 Gb/s DQPSK Signal,” Opt. Express 21(21), 24962–24968 (2013).
    [Crossref] [PubMed]
  22. H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in 10th International Conference on Optical Internet (COIN), May 2012, pp. 50–51.
  23. C. Behrens, D. Lavery, R. Killey, S. Savory, and P. Bayvel, “Long-haul WDM transmission of PDM-8PSK and PDM-8QAM with nonlinear DSP,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), March 2012, paper OM3A.4.
    [Crossref]

2013 (1)

2012 (1)

2011 (2)

2010 (4)

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express 18(22), 23062–23069 (2010).
[Crossref] [PubMed]

T. Sakamoto and A. Chiba, “Coherent synthesis of optical multilevel signals by electrooptic digital-to-analog conversion using multiparallel modulator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1140–1149 (2010).
[Crossref]

2009 (1)

J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Opt. Fiber Technol. 15(3), 197–208 (2009).
[Crossref]

2004 (1)

J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Andrekson, P. A.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Becker, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Chang, S. H.

Cheng, L.

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

Chiba, A.

G.-W. Lu, T. Sakamoto, A. Chiba, T. Kawanishi, T. Miyazaki, K. Higuma, M. Sudo, and J. Ichikawa, “Reconfigurable multilevel transmitter using monolithically integrated quad Mach-Zehnder IQ modulator for optical 16-QAM and 8-PSK generation,” Opt. Express 19(6), 5596–5601 (2011).
[Crossref] [PubMed]

T. Sakamoto and A. Chiba, “Coherent synthesis of optical multilevel signals by electrooptic digital-to-analog conversion using multiparallel modulator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1140–1149 (2010).
[Crossref]

Choi, H. Y.

H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Opt. Express 20(17), 18652–18658 (2012).
[Crossref] [PubMed]

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in 10th International Conference on Optical Internet (COIN), May 2012, pp. 50–51.

Chung, H. S.

Dreschmann, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Ellis, A.

Freude, W.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Goh, T.

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable optical modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” in 36th European Conference and Exhibition on Optical Communication (ECOC), Sep. 2010, pp. 1–3.
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Higuma, K.

Hillerkuss, D.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Ho, K.-P.

J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[Crossref]

Huebner, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Ichikawa, J.

Johannisson, P.

Kahn, J.

J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[Crossref]

Kawanishi, T.

Kim, K.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Koos, C.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Lee, J. H.

Leuthold, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Li, Z.

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

Liu, L.

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

Lu, C.

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

Lu, G.-W.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Meyer, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Mino, S.

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable optical modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” in 36th European Conference and Exhibition on Optical Communication (ECOC), Sep. 2010, pp. 1–3.
[Crossref]

Miyazaki, T.

Mori, A.

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable optical modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” in 36th European Conference and Exhibition on Optical Communication (ECOC), Sep. 2010, pp. 1–3.
[Crossref]

Morita, I.

H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Opt. Express 20(17), 18652–18658 (2012).
[Crossref] [PubMed]

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in 10th International Conference on Optical Internet (COIN), May 2012, pp. 50–51.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Nebendahl, B.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Sakamoto, T.

Schmogrow, R.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Sjödin, M.

Sköld, M.

Sudo, M.

Sunnerud, H.

Tam, H.

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

Tsuritani, T.

H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Opt. Express 20(17), 18652–18658 (2012).
[Crossref] [PubMed]

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in 10th International Conference on Optical Internet (COIN), May 2012, pp. 50–51.

Wai, P.

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

Westlund, M.

Winter, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Winzer, P.

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Xiong, Q.

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

Xu, X.

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

Yamazaki, H.

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable optical modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” in 36th European Conference and Exhibition on Optical Communication (ECOC), Sep. 2010, pp. 1–3.
[Crossref]

Yang, Y.

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yu, J.

J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Opt. Fiber Technol. 15(3), 197–208 (2009).
[Crossref]

Zhao, J.

Zhou, X.

J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Opt. Fiber Technol. 15(3), 197–208 (2009).
[Crossref]

IEEE Commun. Mag. (1)

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[Crossref]

T. Sakamoto and A. Chiba, “Coherent synthesis of optical multilevel signals by electrooptic digital-to-analog conversion using multiparallel modulator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1140–1149 (2010).
[Crossref]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photonics Technol. Lett. 22(21), 1601–1603 (2010).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Opt. Fiber Technol. 15(3), 197–208 (2009).
[Crossref]

Other (12)

T. Sakamoto, A. Chiba, and T. Kawanishi, “Electro-optic synthesis of 8PSK by quad-parallel Mach-Zehnder modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OTuG4.
[Crossref]

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H. Tam, and P. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in 35th European Conference on Optical Communication (ECOC), Sep. 2009, pp. 1–2.

J. Kahn, “Modulation and detection techniques for optical communication systems,” in Proceedings of Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications (Optical Society of America, 2006), paper CThC1.
[Crossref]

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable optical modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” in 36th European Conference and Exhibition on Optical Communication (ECOC), Sep. 2010, pp. 1–3.
[Crossref]

T. Goh, H. Yamazaki, T. Kominato, and S. Mino, “Novel flexible-format optical modulator with selectable combinations of carrier numbers and modulation levels based on silica-PLC and LiNbO3 hybrid integration,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Mar. 2011, paper OWV2.
[Crossref]

X. Zhou, J. Yu, and P. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” in Optical Fiber Communication Conference (Optical Society of America, 2009), pp. 1–3.

N. Kikuchi and S. Sasaki, “Sensitivity improvement of incoherent multilevel (30-Gbit/s 8QAM and 40-Gbit/s 16QAM) signaling with non-euclidean metric and MSPE (multi symbol phase estimation),” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OWG1.
[Crossref]

Y.-K. Huang, E. Ip, P. N. Ji, Y. Shao, T. Wang, Y. Aono, Y. Yano, and T. Tajima, “Terabit/s optical superchannel with flexible modulation format for dynamic distance/route transmission,” in Optical Fiber Communication Conference. Optical Society of America, 2012, paper OM3H.4.
[Crossref]

T. Xia, G. A. Wellbrock, Y.-K. Huang, M.-F. Huang, E. Ip, P. N. Ji, D. Qian, A. Tanaka, Y. Shao, T. Wang, Y. Aono, and T. Tajima, “21.7 Tb/s field trial with 22 DP-8QAM/QPSK optical superchannels over 1,503-km of installed SSMF,” in Optical Fiber Communication Conference. Optical Society of America, 2012, paper PDP5D.6.
[Crossref]

G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Reconfigurable optical 8-ary transmitter based on arbitrary 2-QAM for generating 8PSK and 8QAM,” in Optical Fiber Communication Conference. Optical Society of America, 2012, paper JTh2A.22.
[Crossref]

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in 10th International Conference on Optical Internet (COIN), May 2012, pp. 50–51.

C. Behrens, D. Lavery, R. Killey, S. Savory, and P. Bayvel, “Long-haul WDM transmission of PDM-8PSK and PDM-8QAM with nonlinear DSP,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), March 2012, paper OM3A.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Generated arbitrary 2QAM from an IQ modulator: constant-amplitude 2QAM with 45° (triangles) and 135° (hexagons), and non-constant-amplitude 2QAM with 45° (circles) and 135° (stars).
Fig. 2
Fig. 2 Operating principle of the proposed reconfigurable 8-ary transmitter (a) for generating (b) 8PSK and (c) 8QAM.
Fig. 3
Fig. 3 Numerically-simulated constellations of generated (a) QPSK and (b) 2QAM operated at different conditions, and (c) the normalized relative modulation loss in different conditions with respect to the operation condition ① .
Fig. 4
Fig. 4 Flexible optical 8-ary transmitter experimental setup for generating optical 8PSK and 8QAM. Insets: measured corresponding constellations, eye diagrams and optical spectra for 8PSK and 8QAM.
Fig. 5
Fig. 5 Measured constellations: (a) 45° constant-amplitude 2QAM by balanced-driven IQ modulator (phase trajectory: red solid line); (b) square QPSK; (c) 8PSK.
Fig. 6
Fig. 6 Measured constellations: (a) 45° non-constant-amplitude 2QAM by imbalanced-driven IQ modulator (phase trajectory: red solid line); (b) square QPSK; (c) 8QAM.
Fig. 7
Fig. 7 Measured BER curves for the generated 30 Gb/s 8PSK and 8QAM modulation formats. Annotations show the OSNR penalty with respect to the theoretical BER.

Metrics