Abstract

We propose a bend-insensitive distributed Brillouin optical fiber sensing by using a singlemode-multimode-singlemode optical fiber structure for the first time to the best of our knowledge. The sensing fiber is a graded-index multimode fiber (GI-MMF) sandwiched by two standard single-mode fibers (SMFs) with central-alignment splicing at the interface between GI-MMF and SMF to excite the fundamental mode in GI-MMF. The sensing system can resist a minimal bend radius of 1.25mm while maintain the measurement performance, with which the measured coefficients of strain and temperature are 421.6MHz/% and 0.826MHz/°C, respectively. We also demonstrate that the higher-order modes excited in GI-MMF can be easily influenced by bending, so that exciting the fundamental mode is essential for bend-insensitive distributed sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis

Yongkang Dong, Pengbai Xu, Hongying Zhang, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Opt. Express 22(22) 26510-26516 (2014)

Distributed curvature sensing based on a bending loss-resistant ring-core fiber

Li Shen, Hao Wu, Can Zhao, Lei Shen, Rui Zhang, Weijun Tong, Songnian Fu, and Ming Tang
Photon. Res. 8(2) 165-174 (2020)

Trench-assisted multimode fiber used in Brillouin optical time domain sensors

Zelin Zhang, Yuangang Lu, Yuhang Pan, Xiaoyi Bao, and Liang Chen
Opt. Express 27(8) 11396-11405 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, P. Lu, V. R. Bhardwaj, and X. Bao, “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Opt. Express 21(3), 3031–3042 (2013).
    [Crossref] [PubMed]
  2. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  3. T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
    [Crossref] [PubMed]
  4. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  5. F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010).
    [Crossref]
  6. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  7. K. Himeno, S. Matsuo, N. Guan, and A. Wada, “Low-bending-loss single-mode fibers for fiber-to-the-home,” J. Lightwave Technol. 23(11), 3494–3499 (2005).
    [Crossref]
  8. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photonics Technol. Lett. 15(12), 1737–1739 (2003).
    [Crossref]
  9. G. Ren, Z. Lin, S. Zheng, and S. Jian, “Resonant coupling in trenched bend-insensitive optical fiber,” Opt. Lett. 38(5), 781–783 (2013).
    [Crossref] [PubMed]
  10. B. L. Behera, A. Maity, S. K. Varshney, and R. Datta, “Theoretical investigations of trench-assisted large mode-area low bend loss and single-mode microstructured core fibers,” Opt. Commun. 307, 9–16 (2013).
    [Crossref]
  11. Z. Wang, C. Zhao, and S. Jin, “Design of a bending-insensitive single-mode photonic crystal fiber,” Opt. Fiber Technol. 19(3), 213–218 (2013).
    [Crossref]
  12. N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
    [Crossref] [PubMed]
  13. N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 021103 (2014), doi:.
    [Crossref]
  14. Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
    [Crossref] [PubMed]
  15. D. Donlagic and B. Culshaw, “Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems,” J. Lightwave Technol. 18(3), 334–342 (2000).
    [Crossref]
  16. D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 334–342 (1999).
    [Crossref]
  17. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
    [Crossref] [PubMed]
  18. R. C. Gauthier and C. Ross, “Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor,” Appl. Opt. 36(25), 6264–6273 (1997).
    [Crossref] [PubMed]
  19. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976).
    [Crossref]
  20. W. A. Gambling, H. Hatsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14(5), 130–132 (1978).
    [Crossref]
  21. W. A. Gambling, D. N. Payne, and H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12(21), 567–569 (1976).
    [Crossref]
  22. R. W. Boyd, Nonlinear Optics (Academic, 2008), Chap. 9.
  23. W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014).
  24. A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22(14), 17480–17489 (2014).
    [Crossref] [PubMed]
  25. A. Fotiadi and E. A. Kuzin, “Stimulated Brillouin scattering amplification in multimode optical fibers,” in Conference on Lasers and Electro Optics, CLEO, paper CThL40, (1997).
    [Crossref]
  26. V. Lambin Iezzi, S. Loranger, A. Harhira, R. Kashyap, M. Saad, A. Gomes, and S. Rehman, “Stimulated Brillouin scattering in multi-mode fiber for sensing applications,” in Fibre and Optical Passive Components (WFOPC), 7th Workshop, pp. 1–4, (2011).
    [Crossref]
  27. Y. Mizuno and K. Nakamura, “Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal,” J. Lightwave Technol. 29(17), 2616–2620 (2011).
    [Crossref]

2014 (4)

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 021103 (2014), doi:.
[Crossref]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22(22), 26510–26516 (2014).
[Crossref] [PubMed]

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014).

A. Minardo, R. Bernini, and L. Zeni, “Experimental and numerical study on stimulated Brillouin scattering in a graded-index multimode fiber,” Opt. Express 22(14), 17480–17489 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, P. Lu, V. R. Bhardwaj, and X. Bao, “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Opt. Express 21(3), 3031–3042 (2013).
[Crossref] [PubMed]

G. Ren, Z. Lin, S. Zheng, and S. Jian, “Resonant coupling in trenched bend-insensitive optical fiber,” Opt. Lett. 38(5), 781–783 (2013).
[Crossref] [PubMed]

B. L. Behera, A. Maity, S. K. Varshney, and R. Datta, “Theoretical investigations of trench-assisted large mode-area low bend loss and single-mode microstructured core fibers,” Opt. Commun. 307, 9–16 (2013).
[Crossref]

Z. Wang, C. Zhao, and S. Jin, “Design of a bending-insensitive single-mode photonic crystal fiber,” Opt. Fiber Technol. 19(3), 213–218 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (2)

2008 (1)

2005 (1)

2003 (1)

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photonics Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

2000 (1)

1999 (1)

D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 334–342 (1999).
[Crossref]

1997 (1)

1989 (1)

1978 (1)

W. A. Gambling, H. Hatsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

1976 (2)

W. A. Gambling, D. N. Payne, and H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12(21), 567–569 (1976).
[Crossref]

D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976).
[Crossref]

Ania-Castañón, J. D.

Bao, X.

Baset, F.

Behera, B. L.

B. L. Behera, A. Maity, S. K. Varshney, and R. Datta, “Theoretical investigations of trench-assisted large mode-area low bend loss and single-mode microstructured core fibers,” Opt. Commun. 307, 9–16 (2013).
[Crossref]

Bernini, R.

Bhardwaj, V. R.

Bolognini, G.

Brambilla, G.

Carrasco-Sanz, A.

Chen, L.

Corredera, P.

Culshaw, B.

D. Donlagic and B. Culshaw, “Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems,” J. Lightwave Technol. 18(3), 334–342 (2000).
[Crossref]

D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 334–342 (1999).
[Crossref]

Datta, R.

B. L. Behera, A. Maity, S. K. Varshney, and R. Datta, “Theoretical investigations of trench-assisted large mode-area low bend loss and single-mode microstructured core fibers,” Opt. Commun. 307, 9–16 (2013).
[Crossref]

Di Pasquale, F.

Ding, M.

Dong, Y.

Donlagic, D.

D. Donlagic and B. Culshaw, “Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems,” J. Lightwave Technol. 18(3), 334–342 (2000).
[Crossref]

D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 334–342 (1999).
[Crossref]

Farrell, G.

Gambling, W. A.

W. A. Gambling, H. Hatsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

W. A. Gambling, D. N. Payne, and H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12(21), 567–569 (1976).
[Crossref]

Gauthier, R. C.

González-Herráez, M.

Guan, N.

Harris, J.

Hatsumura, H.

W. A. Gambling, H. Hatsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

Hayashi, N.

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 021103 (2014), doi:.
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

Himeno, K.

Hogari, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photonics Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Horiguchi, T.

Jian, S.

Jin, S.

Z. Wang, C. Zhao, and S. Jin, “Design of a bending-insensitive single-mode photonic crystal fiber,” Opt. Fiber Technol. 19(3), 213–218 (2013).
[Crossref]

Ke, W. W.

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014).

Li, W.

Li, Y.

Lin, Z.

Lu, P.

Lu, Z.

Maity, A.

B. L. Behera, A. Maity, S. K. Varshney, and R. Datta, “Theoretical investigations of trench-assisted large mode-area low bend loss and single-mode microstructured core fibers,” Opt. Commun. 307, 9–16 (2013).
[Crossref]

Marcuse, D.

Martín-López, S.

Matsumura, H.

W. A. Gambling, D. N. Payne, and H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12(21), 567–569 (1976).
[Crossref]

Matsuo, S.

Minakawa, K.

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 021103 (2014), doi:.
[Crossref]

Minardo, A.

Mizuno, Y.

Nakajima, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photonics Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Nakamura, K.

Payne, D. N.

W. A. Gambling, D. N. Payne, and H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12(21), 567–569 (1976).
[Crossref]

Qin, Z.

Ragdale, C. M.

W. A. Gambling, H. Hatsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

Ren, G.

Rodríguez-Barrios, F.

Ross, C.

Sankawa, I.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photonics Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Semenova, Y.

Soto, M. A.

Tajima, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photonics Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Tang, X.

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014).

Tateda, M.

Thévenaz, L.

Varshney, S. K.

B. L. Behera, A. Maity, S. K. Varshney, and R. Datta, “Theoretical investigations of trench-assisted large mode-area low bend loss and single-mode microstructured core fibers,” Opt. Commun. 307, 9–16 (2013).
[Crossref]

Wada, A.

Wang, P.

Wang, X. J.

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014).

Wang, Z.

Z. Wang, C. Zhao, and S. Jin, “Design of a bending-insensitive single-mode photonic crystal fiber,” Opt. Fiber Technol. 19(3), 213–218 (2013).
[Crossref]

Wu, Q.

Xu, P.

Xu, Y.

Zeni, L.

Zhang, H.

Zhao, C.

Z. Wang, C. Zhao, and S. Jin, “Design of a bending-insensitive single-mode photonic crystal fiber,” Opt. Fiber Technol. 19(3), 213–218 (2013).
[Crossref]

Zheng, S.

Zhou, J.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photonics Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

N. Hayashi, K. Minakawa, Y. Mizuno, and K. Nakamura, “Brillouin frequency shift hopping in polymer optical fiber,” Appl. Phys. Lett. 105(9), 021103 (2014), doi:.
[Crossref]

Electron. Lett. (2)

W. A. Gambling, H. Hatsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fiber,” Electron. Lett. 14(5), 130–132 (1978).
[Crossref]

W. A. Gambling, D. N. Payne, and H. Matsumura, “Radiation from curved single-mode fibers,” Electron. Lett. 12(21), 567–569 (1976).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. W. Ke, X. J. Wang, and X. Tang, “Stimulated Brillouin scattering model in multi-mode fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 901610 (2014).

IEEE Photonics Technol. Lett. (1)

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photonics Technol. Lett. 15(12), 1737–1739 (2003).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

B. L. Behera, A. Maity, S. K. Varshney, and R. Datta, “Theoretical investigations of trench-assisted large mode-area low bend loss and single-mode microstructured core fibers,” Opt. Commun. 307, 9–16 (2013).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

Z. Wang, C. Zhao, and S. Jin, “Design of a bending-insensitive single-mode photonic crystal fiber,” Opt. Fiber Technol. 19(3), 213–218 (2013).
[Crossref]

Opt. Lett. (4)

Other (3)

A. Fotiadi and E. A. Kuzin, “Stimulated Brillouin scattering amplification in multimode optical fibers,” in Conference on Lasers and Electro Optics, CLEO, paper CThL40, (1997).
[Crossref]

V. Lambin Iezzi, S. Loranger, A. Harhira, R. Kashyap, M. Saad, A. Gomes, and S. Rehman, “Stimulated Brillouin scattering in multi-mode fiber for sensing applications,” in Fibre and Optical Passive Components (WFOPC), 7th Workshop, pp. 1–4, (2011).
[Crossref]

R. W. Boyd, Nonlinear Optics (Academic, 2008), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup. C, coupler; PC, polarization controller; EOM, electro-optic modulator; DC, direct current; AFG, arbitrary function generator; MG, microwave generator; PS, polarization scrambler; EDFA, erbium-doped fiber amplifier; SMS, singlemode-multimode-singlemode fiber; FBG, fiber Bragg grating; PD, photo detector; OSC, Oscilloscope.
Fig. 2
Fig. 2 Measured Brillouin signals with different bend radii for (a) SMF and (b) GI-MMF of the SMS structure.
Fig. 3
Fig. 3 10 loops imposed on the GI-MMF of SMS structure with bend radii varied from 2mm to 5mm by a step of 1mm.
Fig. 4
Fig. 4 Measured results of a stretched 2.06m-long segment of a 50-m GI-MMF while a bend radius of 1.25mm is applied at the position of ~25m: (a) distributed BFS curves for different strain, (b) linear relationship between BFS and strain, (c) 3D BGS with a strain of 1.165%, (d) Brillouin gain spectra at point A, B and C in (a).
Fig. 5
Fig. 5 (a) Distributed data of BFS of SMS structure, (b) linear relationship between BFS and temperature
Fig. 6
Fig. 6 BFSs of the GI-MMF with lateral offset splicing at the interface of SMF and MMF on the probe beam for (a) 10μm and (b) 15μm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν B = 2 n e f f υ A λ P

Metrics