Abstract

By using a twin-core fiber (TCF), we propose and demonstrate a novel distributed SPR sensor, which employs both the time division multiplexing (TDM) technology and the wavelength division multiplexing (WDM) technology together. The proposed sensor has two sensing passages with four sensing channels (and there are two sensing channels in each sensing passage). We employ the TDM technology to realize the two passage distributed sensing, which are parallel-connection; and we employ the WDM technology to realize the distributed sensing of two channels in a sensing passage, which are series-connected. In order to realize the TDM technology, we employ a two-core fiber, which has two cores in a same cladding, being equal to dividing the traditional single core into two independent sensing zones; in order to realize the WDM technology, we employ a fiber end polishing-connecting method to adjust the resonance angle/wavelength to realize the dynamic range separation. This twin-passage four-channel twin-core fiber SPR sensor is suitable for applying in fields of the multi-channel liquid refractive index and temperature self-reference measurement.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Segmented detection SPR sensor based on seven-core fiber

Yong Wei, Yudong Su, Chunlan Liu, Yonghui Zhang, Xiangfei Nie, Zhihai Liu, Yu Zhang, and Feng Peng
Opt. Express 25(18) 21841-21850 (2017)

Twin-core fiber SPR sensor

Zhihai Liu, Yong Wei, Yu Zhang, Yaxun Zhang, Enming Zhao, Jun Yang, and Libo Yuan
Opt. Lett. 40(12) 2826-2829 (2015)

Research on tunable distributed SPR sensor based on bimetal film

Qiang Chen, Jin Liu, Hai-Ma Yang, Hai-Shan Liu, Yu Wei, Bao-Long Yuan, Jun Li, and Kai Zhao
Appl. Opt. 57(26) 7591-7599 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4, 2855 (2013).
    [Crossref] [PubMed]
  2. J. H. Ahn, T. Y. Seong, W. M. Kim, T. S. Lee, I. Kim, and K. S. Lee, “Fiber-optic waveguide coupled surface plasmon resonance sensor,” Opt. Express 20(19), 21729–21738 (2012).
    [Crossref] [PubMed]
  3. J. Banerjee, M. Bera, and M. Ray, “Simultaneous excitation of multi-spectral surface plasmon resonance using multi-stepped-thickness metallic film,” J. Appl. Phys. 117(11), 113102 (2015).
    [Crossref]
  4. C. L. Wong and M. Olivo, “Surface Plasmon Resonance Imaging Sensors: A Review,” Plasmonics 9(4), 809–824 (2014).
    [Crossref]
  5. C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface Plasmon Resonance Multisensing,” Anal. Chem. 70(4), 703–706 (1998).
    [Crossref]
  6. G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, Sens. “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1–3), 38–45 (1998).
    [Crossref]
  7. J. Homola, H. B. Lu, G. G. Nenninger, J. Dostalek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1–3), 403–410 (2001).
    [Crossref]
  8. J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
    [Crossref]
  9. J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
    [Crossref] [PubMed]
  10. J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
    [Crossref] [PubMed]
  11. G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sensor. Actuat. B-Chem. 51(1–3), 38–45 (1998).
    [Crossref]
  12. Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30(17), 2218–2220 (2005).
    [Crossref] [PubMed]
  13. Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sensor. Actuat B-Chem. 161(1), 269–273 (2012).
    [Crossref]
  14. W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
    [Crossref] [PubMed]
  15. Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photon. Tech. Lett. 19(24), 1958–1960 (2007).
    [Crossref]
  16. B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sensor. Actuat B-Chem. 139(1), 199–203 (2009).
    [Crossref]
  17. M. D. Baiad and R. Kashyap, “Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings,” Opt. Lett. 40(1), 115–118 (2015).
    [Crossref] [PubMed]
  18. L. A. Obando and K. S. Booksh, “Tuning Dynamic Range and Sensitivity of White-Light, Multimode, Fiber-Optic Surface Plasmon Resonance Sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
    [Crossref]
  19. Y. Q. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sensor. Actuat B-Chem. 188(11), 757–760 (2013).
    [Crossref]
  20. R. C. Jorgenson and S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A Phys. 43(1–3), 44–48 (1994).
    [Crossref]
  21. Y. C. Kim, J. F. Masson, and K. S. Booksh, “Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring,” Talanta 67(5), 908–917 (2005).
    [Crossref] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2015 (2)

J. Banerjee, M. Bera, and M. Ray, “Simultaneous excitation of multi-spectral surface plasmon resonance using multi-stepped-thickness metallic film,” J. Appl. Phys. 117(11), 113102 (2015).
[Crossref]

M. D. Baiad and R. Kashyap, “Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings,” Opt. Lett. 40(1), 115–118 (2015).
[Crossref] [PubMed]

2014 (1)

C. L. Wong and M. Olivo, “Surface Plasmon Resonance Imaging Sensors: A Review,” Plasmonics 9(4), 809–824 (2014).
[Crossref]

2013 (2)

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4, 2855 (2013).
[Crossref] [PubMed]

Y. Q. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sensor. Actuat B-Chem. 188(11), 757–760 (2013).
[Crossref]

2012 (2)

J. H. Ahn, T. Y. Seong, W. M. Kim, T. S. Lee, I. Kim, and K. S. Lee, “Fiber-optic waveguide coupled surface plasmon resonance sensor,” Opt. Express 20(19), 21729–21738 (2012).
[Crossref] [PubMed]

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sensor. Actuat B-Chem. 161(1), 269–273 (2012).
[Crossref]

2009 (1)

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sensor. Actuat B-Chem. 139(1), 199–203 (2009).
[Crossref]

2007 (1)

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photon. Tech. Lett. 19(24), 1958–1960 (2007).
[Crossref]

2005 (5)

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[Crossref] [PubMed]

Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30(17), 2218–2220 (2005).
[Crossref] [PubMed]

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[Crossref]

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

Y. C. Kim, J. F. Masson, and K. S. Booksh, “Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring,” Talanta 67(5), 908–917 (2005).
[Crossref] [PubMed]

2002 (1)

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref] [PubMed]

2001 (1)

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostalek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1–3), 403–410 (2001).
[Crossref]

1999 (1)

L. A. Obando and K. S. Booksh, “Tuning Dynamic Range and Sensitivity of White-Light, Multimode, Fiber-Optic Surface Plasmon Resonance Sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

1998 (3)

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sensor. Actuat. B-Chem. 51(1–3), 38–45 (1998).
[Crossref]

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface Plasmon Resonance Multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, Sens. “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1–3), 38–45 (1998).
[Crossref]

1994 (1)

R. C. Jorgenson and S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A Phys. 43(1–3), 44–48 (1994).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ahn, J. H.

Baiad, M. D.

Banerjee, J.

J. Banerjee, M. Bera, and M. Ray, “Simultaneous excitation of multi-spectral surface plasmon resonance using multi-stepped-thickness metallic film,” J. Appl. Phys. 117(11), 113102 (2015).
[Crossref]

Banerji, S.

Bera, M.

J. Banerjee, M. Bera, and M. Ray, “Simultaneous excitation of multi-spectral surface plasmon resonance using multi-stepped-thickness metallic film,” J. Appl. Phys. 117(11), 113102 (2015).
[Crossref]

Berger, C. E. H.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface Plasmon Resonance Multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Beumer, T. A. M.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface Plasmon Resonance Multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Booksh, K. S.

Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30(17), 2218–2220 (2005).
[Crossref] [PubMed]

Y. C. Kim, J. F. Masson, and K. S. Booksh, “Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring,” Talanta 67(5), 908–917 (2005).
[Crossref] [PubMed]

W. Peng, S. Banerji, Y. C. Kim, and K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[Crossref] [PubMed]

L. A. Obando and K. S. Booksh, “Tuning Dynamic Range and Sensitivity of White-Light, Multimode, Fiber-Optic Surface Plasmon Resonance Sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

Chen, S.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Clendenning, J. B.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sensor. Actuat. B-Chem. 51(1–3), 38–45 (1998).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, Sens. “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1–3), 38–45 (1998).
[Crossref]

Dostalek, J.

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostalek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1–3), 403–410 (2001).
[Crossref]

Dostálek, J.

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[Crossref]

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref] [PubMed]

Fujimaki, M.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4, 2855 (2013).
[Crossref] [PubMed]

Fukuda, N.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4, 2855 (2013).
[Crossref] [PubMed]

Furlong, C. E.

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sensor. Actuat. B-Chem. 51(1–3), 38–45 (1998).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, Sens. “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1–3), 38–45 (1998).
[Crossref]

Gopinath, S. C. B.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4, 2855 (2013).
[Crossref] [PubMed]

Greve, J.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface Plasmon Resonance Multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Homola, J.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sensor. Actuat B-Chem. 139(1), 199–203 (2009).
[Crossref]

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[Crossref]

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref] [PubMed]

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostalek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1–3), 403–410 (2001).
[Crossref]

Hu, D.

Y. Q. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sensor. Actuat B-Chem. 188(11), 757–760 (2013).
[Crossref]

Hua, L.

Y. Q. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sensor. Actuat B-Chem. 188(11), 757–760 (2013).
[Crossref]

Huang, J.

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sensor. Actuat B-Chem. 161(1), 269–273 (2012).
[Crossref]

Jiang, S.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A Phys. 43(1–3), 44–48 (1994).
[Crossref]

Kashyap, R.

Kim, I.

Kim, W. M.

Kim, Y. C.

Kooyman, R. P. H.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface Plasmon Resonance Multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

Kvasnicka, P.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sensor. Actuat B-Chem. 139(1), 199–203 (2009).
[Crossref]

Lakshmipriya, T.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4, 2855 (2013).
[Crossref] [PubMed]

Lee, K. S.

Lee, T. S.

Li, M.

Y. Q. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sensor. Actuat B-Chem. 188(11), 757–760 (2013).
[Crossref]

Lu, H. B.

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostalek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1–3), 403–410 (2001).
[Crossref]

Masson, J. F.

Y. C. Kim, J. F. Masson, and K. S. Booksh, “Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring,” Talanta 67(5), 908–917 (2005).
[Crossref] [PubMed]

Nenninger, G. G.

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostalek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1–3), 403–410 (2001).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, Sens. “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1–3), 38–45 (1998).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sensor. Actuat. B-Chem. 51(1–3), 38–45 (1998).
[Crossref]

Nomura, K.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4, 2855 (2013).
[Crossref] [PubMed]

Obando, L. A.

L. A. Obando and K. S. Booksh, “Tuning Dynamic Range and Sensitivity of White-Light, Multimode, Fiber-Optic Surface Plasmon Resonance Sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

Olivo, M.

C. L. Wong and M. Olivo, “Surface Plasmon Resonance Imaging Sensors: A Review,” Plasmonics 9(4), 809–824 (2014).
[Crossref]

Peng, W.

Piliarik, M.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sensor. Actuat B-Chem. 139(1), 199–203 (2009).
[Crossref]

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

Rajarajan, M.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sensor. Actuat B-Chem. 139(1), 199–203 (2009).
[Crossref]

Rasooly, A.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref] [PubMed]

Ray, M.

J. Banerjee, M. Bera, and M. Ray, “Simultaneous excitation of multi-spectral surface plasmon resonance using multi-stepped-thickness metallic film,” J. Appl. Phys. 117(11), 113102 (2015).
[Crossref]

Seong, T. Y.

Špacková, B.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sensor. Actuat B-Chem. 139(1), 199–203 (2009).
[Crossref]

Sun, F. G.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photon. Tech. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Themistos, C.

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sensor. Actuat B-Chem. 139(1), 199–203 (2009).
[Crossref]

Vaisocherova, H.

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[Crossref]

Vaisocherová, H.

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

Wang, L.

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sensor. Actuat B-Chem. 161(1), 269–273 (2012).
[Crossref]

Wang, X.

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4, 2855 (2013).
[Crossref] [PubMed]

Wong, C. L.

C. L. Wong and M. Olivo, “Surface Plasmon Resonance Imaging Sensors: A Review,” Plasmonics 9(4), 809–824 (2014).
[Crossref]

Wu, Y. M.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photon. Tech. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Xiao, G. Z.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photon. Tech. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Yee, S. S.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref] [PubMed]

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostalek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1–3), 403–410 (2001).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, Sens. “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1–3), 38–45 (1998).
[Crossref]

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sensor. Actuat. B-Chem. 51(1–3), 38–45 (1998).
[Crossref]

R. C. Jorgenson and S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A Phys. 43(1–3), 44–48 (1994).
[Crossref]

Yuan, Y. Q.

Y. Q. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sensor. Actuat B-Chem. 188(11), 757–760 (2013).
[Crossref]

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sensor. Actuat B-Chem. 161(1), 269–273 (2012).
[Crossref]

Zhang, Z. Y.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photon. Tech. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Zhao, P.

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photon. Tech. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Anal. Chem. (2)

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, “Surface Plasmon Resonance Multisensing,” Anal. Chem. 70(4), 703–706 (1998).
[Crossref]

L. A. Obando and K. S. Booksh, “Tuning Dynamic Range and Sensitivity of White-Light, Multimode, Fiber-Optic Surface Plasmon Resonance Sensors,” Anal. Chem. 71(22), 5116–5122 (1999).
[Crossref]

IEEE Photon. Tech. Lett. (1)

Z. Y. Zhang, P. Zhao, F. G. Sun, G. Z. Xiao, and Y. M. Wu, “Self-Referencing in Optical-Fiber Surface Plasmon Resonance Sensors,” IEEE Photon. Tech. Lett. 19(24), 1958–1960 (2007).
[Crossref]

Int. J. Food Microbiol. (1)

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75(1-2), 61–69 (2002).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. Banerjee, M. Bera, and M. Ray, “Simultaneous excitation of multi-spectral surface plasmon resonance using multi-stepped-thickness metallic film,” J. Appl. Phys. 117(11), 113102 (2015).
[Crossref]

Methods (1)

J. Homola, H. Vaisocherová, J. Dostálek, and M. Piliarik, “Multi-analyte surface plasmon resonance biosensing,” Methods 37(1), 26–36 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Nomura, S. C. B. Gopinath, T. Lakshmipriya, N. Fukuda, X. Wang, and M. Fujimaki, “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun. 4, 2855 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Plasmonics (1)

C. L. Wong and M. Olivo, “Surface Plasmon Resonance Imaging Sensors: A Review,” Plasmonics 9(4), 809–824 (2014).
[Crossref]

Sens. Actuators A Phys. (1)

R. C. Jorgenson and S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A Phys. 43(1–3), 44–48 (1994).
[Crossref]

Sens. Actuators B Chem. (3)

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, Sens. “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sens. Actuators B Chem. 51(1–3), 38–45 (1998).
[Crossref]

J. Homola, H. B. Lu, G. G. Nenninger, J. Dostalek, and S. S. Yee, “A novel multichannel surface plasmon resonance biosensor,” Sens. Actuators B Chem. 76(1–3), 403–410 (2001).
[Crossref]

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[Crossref]

Sensor. Actuat B-Chem. (3)

Y. Q. Yuan, L. Wang, and J. Huang, “Theoretical investigation for two cascaded SPR fiber optic sensors,” Sensor. Actuat B-Chem. 161(1), 269–273 (2012).
[Crossref]

B. Špačková, M. Piliarik, P. Kvasnička, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sensor. Actuat B-Chem. 139(1), 199–203 (2009).
[Crossref]

Y. Q. Yuan, D. Hu, L. Hua, and M. Li, “Theoretical investigations for surface plasmon resonance based optical fiber tip sensor,” Sensor. Actuat B-Chem. 188(11), 757–760 (2013).
[Crossref]

Sensor. Actuat. B-Chem. (1)

G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, “Reference-compensated biosensing using a dual-channel surface plasmon resonance sensor system based on a planar lightpipe configuration,” Sensor. Actuat. B-Chem. 51(1–3), 38–45 (1998).
[Crossref]

Talanta (1)

Y. C. Kim, J. F. Masson, and K. S. Booksh, “Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring,” Talanta 67(5), 908–917 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sketch diagram of incident angle adjusting method.
Fig. 2
Fig. 2 (a) simulated results of fiber grinding angle of 7° ; (b) experimental results of fiber grinding angle of 7° ; (c) simulated results of fiber grinding angle of 16° ; (d) experimental results of fiber grinding angle of 16°.
Fig. 3
Fig. 3 Sketch diagram of twin-passage four-channel SPR sensor based on the twin-core fiber; (a) profile image of the twin-core fiber
Fig. 4
Fig. 4 (a) Image of the first TCF with the grinding angle α of 16°; (b) image of the fused two TCFs; (d) the three dimensional testing result of the gold film surface with a groove; (e) the test result of the groove depth, which equals to the film thickness.
Fig. 5
Fig. 5 The experiment setup sketch diagram of the twin-core fiber SPR sensor
Fig. 6
Fig. 6 (a) Simulated and (b) experimental results of the SPR spectrum with only sensing channel I-1 working; (c) simulated and (d) experimental results of the SPR spectrum with only sensing channel I-2 working; (e) simulated and (f) experimental results of the SPR spectrum with both sensing channels in passage I working.
Fig. 7
Fig. 7 (a) simulated and (b) experimental results of the SPR spectrum with both sensing channels in passage II working.
Fig. 8
Fig. 8 Comparison of the testing sensitivity with different working function of (a) sensing passage I and (b) sensing passage II; (c) the sketch diagram of the wording function of one sensing passage (sensing passage I or sensing passage II), here OSA means optical spectrum analyzer.

Tables (1)

Tables Icon

Table 1 Overview of the experimental results

Metrics