Abstract

We propose an improved design approach for athermal silicon-on-insulator Mach-Zehnder interferometers to extend their spectral range with minimal temperature sensitivity. We demonstrate that the device designed following the improved approach has a near-zero temperature sensitivity (2.5 pm/K) over more than 60 nm spectral range near 1550 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers

Biswajeet Guha, Alexander Gondarenko, and Michal Lipson
Opt. Express 18(3) 1879-1887 (2010)

Compact multimode waveguide based temperature-insensitive Mach-Zehnder interferometer

Yingxuan Zhao, Chao Qiu, Aimin Wu, Yang Li, Lue Tao, Zhen Sheng, Wei Li, Xi Wang, and Fuwan Gan
Opt. Express 27(15) 20373-20382 (2019)

CMOS-compatible temperature-independent tunable silicon optical lattice filters

Liangjun Lu, Linjie Zhou, Xiaomeng Sun, Jingya Xie, Zhi Zou, Haike Zhu, Xinwan Li, and Jianping Chen
Opt. Express 21(8) 9447-9456 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  3. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  4. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32(13), 1800–1802 (2007).
    [Crossref] [PubMed]
  5. M. Ibrahim, J. H. Schmid, A. Aleali, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D.-X. Xu, and W. N. Ye, “Athermal silicon waveguides with bridged subwavelength gratings for TE and TM polarizations,” Opt. Express 20(16), 18356–18361 (2012).
    [Crossref] [PubMed]
  6. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [Crossref] [PubMed]
  7. X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
    [Crossref]
  8. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008).
    [Crossref] [PubMed]
  9. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directlyintegrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, paper CPDB10.
    [Crossref]
  10. R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low power thermal tuning of second-order microring resonators,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007, p. CFQ5.
    [Crossref]
  11. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
    [Crossref] [PubMed]
  12. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
    [Crossref] [PubMed]
  13. S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
    [Crossref]
  14. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature dependent refractive index of silicon and germanium,” arXiv:physics/0606168, 62732J (2006).
  15. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” ArXiv08050091 (2008).
  16. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36(7), 1059–1061 (2011).
    [Crossref] [PubMed]
  17. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  18. Institute of Microelectronics, “Design rules for silicon photonics prototyping,” https://www.a-star.edu.sg/Portals/30/IME_Research/NanoPhotonicsProgramme/IME_design%20rules%20for%20silicon%20photonics%20prototyping%20V1_2008.pdf .
  19. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [Crossref] [PubMed]

2013 (1)

S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (1)

2009 (2)

2008 (1)

2007 (1)

2006 (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

1971 (1)

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Aleali, A.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Amatya, R.

R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low power thermal tuning of second-order microring resonators,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007, p. CFQ5.
[Crossref]

Apsel, A. B.

Baets, R.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Bock, P. J.

Bogaerts, W.

S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

Bowers, J. E.

Cheben, P.

D’heer, H.

S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

Dai, D.

Densmore, A.

Ding, Y.

Dokania, R. K.

Dumon, P.

Dwivedi, S.

S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

Gan, F.

R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low power thermal tuning of second-order microring resonators,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007, p. CFQ5.
[Crossref]

Gondarenko, A.

Guha, B.

Han, M.

Han, X.

Hao, Y.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
[Crossref]

Holzwarth, C. W.

R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low power thermal tuning of second-order microring resonators,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007, p. CFQ5.
[Crossref]

Hvam, J. M.

Ibrahim, M.

Janz, S.

Jian, X.

Jiang, X.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
[Crossref]

Kärtner, F.

R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low power thermal tuning of second-order microring resonators,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007, p. CFQ5.
[Crossref]

Lamontagne, B.

Lapointe, J.

Lipson, M.

Liu, L.

Luck, D. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directlyintegrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, paper CPDB10.
[Crossref]

Ma, R.

Manipatruni, S.

Moooka, T.

Morthier, G.

Nielson, G. N.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directlyintegrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, paper CPDB10.
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Poitras, C. B.

Popovic, M. A.

R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low power thermal tuning of second-order microring resonators,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007, p. CFQ5.
[Crossref]

Ram, R. J.

R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low power thermal tuning of second-order microring resonators,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007, p. CFQ5.
[Crossref]

Schmid, J. H.

Schmidt, B.

Sherwood-Droz, N.

Smith, H. I.

R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low power thermal tuning of second-order microring resonators,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007, p. CFQ5.
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Teng, J.

Tien, P. K.

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directlyintegrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, paper CPDB10.
[Crossref]

Uenuma, M.

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Wang, A.

Wang, F.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
[Crossref]

Wang, M.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
[Crossref]

Wang, X.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
[Crossref]

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directlyintegrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, paper CPDB10.
[Crossref]

Xiao, S.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
[Crossref]

Xu, D.-X.

Yang, J.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
[Crossref]

Ye, W. N.

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directlyintegrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, paper CPDB10.
[Crossref]

Yvind, K.

Zhang, H.

Zhao, M.

Zheng, W.

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
[Crossref]

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directlyintegrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, paper CPDB10.
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Other (6)

X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Athermal silicon arrayed waveguide grating with polymer-filled slot structure,” in 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 253–255.
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directlyintegrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, paper CPDB10.
[Crossref]

R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low power thermal tuning of second-order microring resonators,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2007, p. CFQ5.
[Crossref]

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature dependent refractive index of silicon and germanium,” arXiv:physics/0606168, 62732J (2006).

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” ArXiv08050091 (2008).

Institute of Microelectronics, “Design rules for silicon photonics prototyping,” https://www.a-star.edu.sg/Portals/30/IME_Research/NanoPhotonicsProgramme/IME_design%20rules%20for%20silicon%20photonics%20prototyping%20V1_2008.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the silicon-on-insulator waveguide. (b) Thermo-optic coefficient of TE0, TM0, and TE1 mode of the waveguide as a function of the waveguide width. (c) Group index of TE0, TM0, and TE1 mode of the waveguide as a function of the waveguide width. (d) Dependence of thermo-optic coefficient on wavelength of TE0, TM0, and TE1 mode of the waveguide as a function of the waveguide width.
Fig. 2
Fig. 2 The schematic of the designed MZI and the TE mode profile in each interferometer arm.
Fig. 3
Fig. 3 (a) Schematic of the directional coupler. (b) Phase matching condition.
Fig. 4
Fig. 4 Optical micrograph of the fabricated devices.
Fig. 5
Fig. 5 (a) Sketch of the characterization setup. (b) Setup image.
Fig. 6
Fig. 6 (a) Measured spectra of the fabricated device at different temperature. (b) Fitted spectra of the fabricated device at different temperature. (c) Simulated spectral shift with temperature of the designed device, and simulated and measured spectral shift with temperature of the fabricated device.

Tables (1)

Tables Icon

Table 1 Waveguide length of two arms of the designed MZI

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

m λ 0 = n 1 L 1 n 2 L 2
m ( λ 0 + Δ λ ) = ( n 1 + n 1 T Δ T + n 1 λ Δ λ ) L 1 ( n 2 + n 2 T Δ T + n 2 λ Δ λ ) L 2
Δ λ Δ T = n 1 T L 1 n 2 T L 2 n g , 1 L 1 n g , 2 L 2 λ 0 0
n 1 T L 1 n 2 T L 2 = 0
F S R T = 0
F S R = λ 2 n g , 1 L 1 n g , 2 L 2
( Δ λ / Δ T ) λ = 0
2 n 1 T λ L 1 2 n 2 T λ L 2 = 0
{ n 1 T L 1 n 2 T L 2 n 3 T L 3 = 0 2 n 1 T λ L 1 2 n 2 T λ L 2 2 n 3 T λ L 3 = 0 F S R = λ 2 n g , 1 L 1 n g , 2 L 2 n g , 2 L 3
α = 4 σ 2 h 3 β ( w + 2 / p )

Metrics