Abstract

We demonstrate downstream transmission of a four-channel 40-Gb/s-per-channel time- and wavelength-division-multiplexed PON over a 42-km, 64-split fiber plant using optical duobinary modulation. At 1550 nm, we obtain a reach of 0-26 km or 16-42 km using two dispersion-precompensation values.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strategies for economical next-generation 50G and 100G passive optical networks [Invited]

Doutje van Veen and Vincent Houtsma
J. Opt. Commun. Netw. 12(1) A95-A103 (2020)

Comparison of cost- and energy-efficient signal modulations for next generation passive optical networks

J. L. Wei, K. Grobe, C. Sanchez, E. Giacoumidis, and H. Griesser
Opt. Express 23(22) 28271-28281 (2015)

100  Gb/s (4 × 25  Gb/s) real-time coherent UDWDM-PON with a large power budget

Ming Luo, Danyu Wu, Weizhong Li, Tao Zeng, Lei Zhou, Lingheng Meng, Xiang Li, and Shaohua Yu
J. Opt. Commun. Netw. 12(2) A204-A213 (2020)

References

  • View by:
  • |
  • |
  • |

  1. ITU-T G.989.1, “40-Gigabit-capable passive optical networks (NG-PON2): General requirements.”
  2. D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” in Proceedings of ECOC2014, Postdeadline Paper PD.1.4.
    [Crossref]
  3. A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
    [Crossref]
  4. M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W.GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
    [Crossref]
  5. IEEE Std 802.3av (2009).
  6. D. van Veen, V. Houtsma, P. Winzer, and P. Vetter, “26-Gbps PON transmission over 40-km using duobinary detection with a low cost 7-GHz APD-based receiver,” in Proceedings of ECOC 2012. Paper Tu.3.B.1 (2012).
    [Crossref]
  7. V. Houtsma, D. van Veen, A. Gnauck, and P. Iannone, “APD-based duobinary direct detection receivers for 40 Gbps TDM-PON,” in Proceedings of OFC 2015, Paper Th4H.1 (2015).
    [Crossref]
  8. A. Lender, “Correlative Digital Communication Techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
    [Crossref]
  9. IEEE Std 802.3ba, clause 88 (2010).
  10. D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “Demonstration of 40-Gb/s TDM-PON over 42-km with 31 dB optical power budget using an APD-based receiver,” J. Lightwave Technol. 33(8), 1675–1680 (2015).
    [Crossref]

2015 (1)

2012 (1)

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W.GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

1995 (1)

A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
[Crossref]

1964 (1)

A. Lender, “Correlative Digital Communication Techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
[Crossref]

Gnauck, A.

Houtsma, V.

Iannone, P.

Ishibashi, T.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W.GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Kodama, S.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W.GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Le Mercier, N.

A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
[Crossref]

Lender, A.

A. Lender, “Correlative Digital Communication Techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
[Crossref]

Muramoto, Y.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W.GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Nada, M.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W.GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Price, A. J.

A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
[Crossref]

van Veen, D.

Yokoyama, H.

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W.GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

Electron. Lett. (2)

A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31(1), 58–59 (1995).
[Crossref]

M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and S. Kodama, “InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W.GHz for 25 Gbit/s high-speed operations,” Electron. Lett. 48(7), 397–399 (2012).
[Crossref]

IEEE Trans. Commun. Technol. (1)

A. Lender, “Correlative Digital Communication Techniques,” IEEE Trans. Commun. Technol. 12(4), 128–135 (1964).
[Crossref]

J. Lightwave Technol. (1)

Other (6)

IEEE Std 802.3ba, clause 88 (2010).

ITU-T G.989.1, “40-Gigabit-capable passive optical networks (NG-PON2): General requirements.”

D. van Veen, V. Houtsma, A. Gnauck, and P. Iannone, “40-Gb/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver,” in Proceedings of ECOC2014, Postdeadline Paper PD.1.4.
[Crossref]

IEEE Std 802.3av (2009).

D. van Veen, V. Houtsma, P. Winzer, and P. Vetter, “26-Gbps PON transmission over 40-km using duobinary detection with a low cost 7-GHz APD-based receiver,” in Proceedings of ECOC 2012. Paper Tu.3.B.1 (2012).
[Crossref]

V. Houtsma, D. van Veen, A. Gnauck, and P. Iannone, “APD-based duobinary direct detection receivers for 40 Gbps TDM-PON,” in Proceedings of OFC 2015, Paper Th4H.1 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simplified diagram of the 160-Gb/s TWDM PON concept.
Fig. 2
Fig. 2 Experimental implementation of the ODB transmitters. Insets show simulated (noise-free) electrical drive signals before and after low-pass filtering. The yellow regions represent the eye openings.
Fig. 3
Fig. 3 Experimental implementation of the APD-based receiver.
Fig. 4
Fig. 4 Spectrum of the 4-channel ODB signal before and after filtering by the AWG. Resolution: 0.05 nm.
Fig. 5
Fig. 5 Back-to-back performance for single-channel NRZ and ODB (without the AWGR), and for 4-channel WDM ODB (odd and even inner channels). Insets: transmitted eyes.
Fig. 6
Fig. 6 Transmission results for the inner channel at 193.4 THz over the 1:64 TWDM PON for two values of dispersion precompensation (−224 ps/nm and −488 ps/nm).

Metrics