Abstract

We propose a new optical coherent detection scheme with a “two-tone” local light, which is also in principle insensitive to the laser phase fluctuation and is assisted by the digital signal processing technique for radio-over-fiber (RoF) systems. The main feature of our proposal is that the frequency separation of the two-tone local light is different from that of the RoF signal, which is called “offset-frequency-spaced” in this paper. First, we explain the principle of our new proposal and experimentally demonstrate the data recovery. Then, the influence of the frequency detuning between photo-detected modulated and unmodulated signals is discussed. Moreover, the transmission performance with an error vector magnitude (EVM) is evaluated for the optical coherent detection of a 10-Gbaud quadrature-phase-shift-keying RoF signal after a 20-km-long standard single-mode fiber transmission.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bandpass sampling based digital coherent receiver with free-running local oscillator laser for phase-modulated radio-over-fiber links

Minghua Cao, Jianqiang Li, Yitang Dai, Feifei Yin, and Kun Xu
Opt. Express 22(22) 27007-27018 (2014)

Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology

Atsushi Kanno, Toshiaki Kuri, Iwao Hosako, Tetsuya Kawanishi, Yuki Yoshida, Yoshihiro Yasumura, and Ken-ichi Kitayama
Opt. Express 20(28) 29395-29403 (2012)

Feed-forward frequency offset estimation for 32-QAM optical coherent detection

Fei Xiao, Jianing Lu, Songnian Fu, Chenhui Xie, Ming Tang, Jinwen Tian, and Deming Liu
Opt. Express 25(8) 8828-8839 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Cisco White Paper, “Cisco visual networking index: Global mobile data traffic forecast update, 2014-2019,” (Cisco, 2015).
  2. M. Weiss, A. Stöhr, F. Lecoche, and B. Charbonnier, “27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM,” in 2009 IEEE International Topical Meeting on Microwave Photonics (MWP, 2009) pp. 1–3.
  3. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express 19(25), 24944–24949 (2011).
    [Crossref] [PubMed]
  4. A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
    [Crossref]
  5. D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeatered optical transmission of 20 Gbit/s quadrature phase-shift keying signals over 210 km using homodyne phase-diversity receiver and digital signal processing,” IEEE Electron. Lett. 41(4), 206–207 (2005).
    [Crossref]
  6. E. Yamazaki, M. Tomizawa, and Y. Miyamoto, “100-Gb/s optical transport network and beyond employing digital signal processing,” IEEE Commun. Mag. 50(2), s43–s49 (2012).
    [Crossref]
  7. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4,160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
    [Crossref]
  8. F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
    [Crossref]
  9. Z. Cao, F. Li, Y. Liu, J. Yu, Q. Wang, C. W. Oh, Y. Jiao, N. C. Tran, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “61.3-Gbps hybrid fiber-wireless in-home network enabled by optical heterodyne and polarization multiplexing,” J. Lightwave Technol. 32(19), 3227–3233 (2014).
    [Crossref]
  10. Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
    [Crossref]
  11. T. Kuri, T. Sakamoto, G.-W. Lu, and T. Kawanishi, “Laser-phase-fluctuation-insensitive optical coherent detection scheme for radio-over-fiber system,” J. Lightwave Technol. 32(20), 3803–3809 (2014).
    [Crossref]
  12. T. Kuri, T. Sakamoto, and T. Kawanishi, “Laser-phase-fluctuation-insensitive offset-frequency-spaced two-tone optical coherent detection scheme with digital-signal-processing technique for radio-over-fiber systems,” Proc. SPIE 9387, 93870D (2015).
    [Crossref]

2015 (1)

T. Kuri, T. Sakamoto, and T. Kawanishi, “Laser-phase-fluctuation-insensitive offset-frequency-spaced two-tone optical coherent detection scheme with digital-signal-processing technique for radio-over-fiber systems,” Proc. SPIE 9387, 93870D (2015).
[Crossref]

2014 (2)

2013 (3)

F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
[Crossref]

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

2012 (1)

E. Yamazaki, M. Tomizawa, and Y. Miyamoto, “100-Gb/s optical transport network and beyond employing digital signal processing,” IEEE Commun. Mag. 50(2), s43–s49 (2012).
[Crossref]

2011 (1)

2008 (1)

2005 (1)

D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeatered optical transmission of 20 Gbit/s quadrature phase-shift keying signals over 210 km using homodyne phase-diversity receiver and digital signal processing,” IEEE Electron. Lett. 41(4), 206–207 (2005).
[Crossref]

Arlunno, V.

Borkowski, R.

Caballero, A.

Cao, Z.

Charbonnier, B.

M. Weiss, A. Stöhr, F. Lecoche, and B. Charbonnier, “27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM,” in 2009 IEEE International Topical Meeting on Microwave Photonics (MWP, 2009) pp. 1–3.

Chen, L.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
[Crossref]

Deng, L.

Dogadaev, A.

Dong, Z.

Hosako, I.

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

Jansen, S. L.

Jiao, Y.

Kanno, A.

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

Karinou, F.

Katoh, K.

D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeatered optical transmission of 20 Gbit/s quadrature phase-shift keying signals over 210 km using homodyne phase-diversity receiver and digital signal processing,” IEEE Electron. Lett. 41(4), 206–207 (2005).
[Crossref]

Kawanishi, T.

T. Kuri, T. Sakamoto, and T. Kawanishi, “Laser-phase-fluctuation-insensitive offset-frequency-spaced two-tone optical coherent detection scheme with digital-signal-processing technique for radio-over-fiber systems,” Proc. SPIE 9387, 93870D (2015).
[Crossref]

T. Kuri, T. Sakamoto, G.-W. Lu, and T. Kawanishi, “Laser-phase-fluctuation-insensitive optical coherent detection scheme for radio-over-fiber system,” J. Lightwave Technol. 32(20), 3803–3809 (2014).
[Crossref]

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

Kikuchi, K.

D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeatered optical transmission of 20 Gbit/s quadrature phase-shift keying signals over 210 km using homodyne phase-diversity receiver and digital signal processing,” IEEE Electron. Lett. 41(4), 206–207 (2005).
[Crossref]

Kitayama, K.

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

Koonen, A. M. J.

Kuri, T.

T. Kuri, T. Sakamoto, and T. Kawanishi, “Laser-phase-fluctuation-insensitive offset-frequency-spaced two-tone optical coherent detection scheme with digital-signal-processing technique for radio-over-fiber systems,” Proc. SPIE 9387, 93870D (2015).
[Crossref]

T. Kuri, T. Sakamoto, G.-W. Lu, and T. Kawanishi, “Laser-phase-fluctuation-insensitive optical coherent detection scheme for radio-over-fiber system,” J. Lightwave Technol. 32(20), 3803–3809 (2014).
[Crossref]

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

Lecoche, F.

M. Weiss, A. Stöhr, F. Lecoche, and B. Charbonnier, “27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM,” in 2009 IEEE International Topical Meeting on Microwave Photonics (MWP, 2009) pp. 1–3.

Li, F.

Li, X.

Liu, Y.

Lu, G.-W.

Ly-Gagnon, D.-S.

D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeatered optical transmission of 20 Gbit/s quadrature phase-shift keying signals over 210 km using homodyne phase-diversity receiver and digital signal processing,” IEEE Electron. Lett. 41(4), 206–207 (2005).
[Crossref]

Miyamoto, Y.

E. Yamazaki, M. Tomizawa, and Y. Miyamoto, “100-Gb/s optical transport network and beyond employing digital signal processing,” IEEE Commun. Mag. 50(2), s43–s49 (2012).
[Crossref]

Monroy, I. T.

Morita, I.

Oh, C. W.

Pang, X.

Pedersen, J. S.

Roubeau, F.

Sakamoto, T.

T. Kuri, T. Sakamoto, and T. Kawanishi, “Laser-phase-fluctuation-insensitive offset-frequency-spaced two-tone optical coherent detection scheme with digital-signal-processing technique for radio-over-fiber systems,” Proc. SPIE 9387, 93870D (2015).
[Crossref]

T. Kuri, T. Sakamoto, G.-W. Lu, and T. Kawanishi, “Laser-phase-fluctuation-insensitive optical coherent detection scheme for radio-over-fiber system,” J. Lightwave Technol. 32(20), 3803–3809 (2014).
[Crossref]

Schenk, T. C. W.

Shu, Q.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

Stöhr, A.

M. Weiss, A. Stöhr, F. Lecoche, and B. Charbonnier, “27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM,” in 2009 IEEE International Topical Meeting on Microwave Photonics (MWP, 2009) pp. 1–3.

Takeda, N.

Tanaka, H.

Tang, Q.

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

Tangdiongga, E.

Tien Dat, P.

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

Tomizawa, M.

E. Yamazaki, M. Tomizawa, and Y. Miyamoto, “100-Gb/s optical transport network and beyond employing digital signal processing,” IEEE Commun. Mag. 50(2), s43–s49 (2012).
[Crossref]

Tran, N. C.

van den Boom, H. P. A.

Wang, Q.

Weiss, M.

M. Weiss, A. Stöhr, F. Lecoche, and B. Charbonnier, “27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM,” in 2009 IEEE International Topical Meeting on Microwave Photonics (MWP, 2009) pp. 1–3.

Yamazaki, E.

E. Yamazaki, M. Tomizawa, and Y. Miyamoto, “100-Gb/s optical transport network and beyond employing digital signal processing,” IEEE Commun. Mag. 50(2), s43–s49 (2012).
[Crossref]

Yasumura, Y.

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

Yoshida, Y.

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

Yu, J.

Z. Cao, F. Li, Y. Liu, J. Yu, Q. Wang, C. W. Oh, Y. Jiao, N. C. Tran, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “61.3-Gbps hybrid fiber-wireless in-home network enabled by optical heterodyne and polarization multiplexing,” J. Lightwave Technol. 32(19), 3227–3233 (2014).
[Crossref]

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

Yu, X.

Zibar, D.

IEEE Commun. Mag. (1)

E. Yamazaki, M. Tomizawa, and Y. Miyamoto, “100-Gb/s optical transport network and beyond employing digital signal processing,” IEEE Commun. Mag. 50(2), s43–s49 (2012).
[Crossref]

IEEE Electron. Lett. (1)

D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeatered optical transmission of 20 Gbit/s quadrature phase-shift keying signals over 210 km using homodyne phase-diversity receiver and digital signal processing,” IEEE Electron. Lett. 41(4), 206–207 (2005).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

Z. Cao, J. Yu, F. Li, L. Chen, Q. Shu, Q. Tang, and L. Chen, “Energy efficient and transparent platform for optical wireless networks based on reverse modulation,” IEEE J. Sel. Areas Comm. 31(12), 804–814 (2013).
[Crossref]

IEICE Trans. Electron. (1)

A. Kanno, P. Tien Dat, T. Kuri, I. Hosako, T. Kawanishi, Y. Yasumura, Y. Yoshida, and K. Kitayama, “Quadrature-phase-shift-keying radio-over-fiber transmission for coherent optical and radio seamless networks,” IEICE Trans. Electron. E96-C(2), 156–162 (2013).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (1)

Proc. SPIE (1)

T. Kuri, T. Sakamoto, and T. Kawanishi, “Laser-phase-fluctuation-insensitive offset-frequency-spaced two-tone optical coherent detection scheme with digital-signal-processing technique for radio-over-fiber systems,” Proc. SPIE 9387, 93870D (2015).
[Crossref]

Other (2)

Cisco White Paper, “Cisco visual networking index: Global mobile data traffic forecast update, 2014-2019,” (Cisco, 2015).

M. Weiss, A. Stöhr, F. Lecoche, and B. Charbonnier, “27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM,” in 2009 IEEE International Topical Meeting on Microwave Photonics (MWP, 2009) pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Principle of newly proposed optical coherent detection scheme.
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 Calculated electrical spectra: (a) generated beating signal, (b) separated modulated signal, (c) separated unmodulated carrier, (d) separated unmodulated carrier down-shifted by Δf, and (e) recovered data after laser-phase-fluctuation cancellation.
Fig. 4
Fig. 4 Measured symbol constellations of modulated signal: (a) before and (b) after laser-phase-fluctuation cancelation.
Fig. 5
Fig. 5 Measured EVM versus detuning frequency.
Fig. 6
Fig. 6 Measured EVMs versus received optical power after 20-km-long SMF transmission and back-to-back: (a) 9-GHz detuning, (b) 10-GHz detuning, (c) 11-GHz detuning, and (d) 12-GHz-detuning.
Fig. 7
Fig. 7 Measured BERs.
Fig. 8
Fig. 8 Schematic of de-multiplexing in digital signal processing.
Fig. 9
Fig. 9 Measured constellations: (a) before cancellation without BEF, (b) after cancellation without BEF, (c) before cancellation with BER, and (d) after cancellation with BEF.
Fig. 10
Fig. 10 Estimated EVMs as a function of received optical power with and without BEF.
Fig. 11
Fig. 11 Measured BERs as a function of received optical power with and without BEF.

Metrics