Abstract

We propose a novel multi-frequency color-marked fringe projection profilometry approach to measure the 3D shape of objects with depth discontinuities. A digital micromirror device projector is used to project a color map consisting of a series of different-frequency color-marked fringe patterns onto the target object. We use a chromaticity curve to calculate the color change caused by the height of the object. The related algorithm to measure the height is also described in this paper. To improve the measurement accuracy, a chromaticity curve correction method is presented. This correction method greatly reduces the influence of color fluctuations and measurement error on the chromaticity curve and the calculation of the object height. The simulation and experimental results validate the utility of our method. Our method avoids the conventional phase shifting and unwrapping process, as well as the independent calculation of the object height required by existing techniques. Thus, it can be used to measure complex and dynamic objects with depth discontinuities. These advantages are particularly promising for industrial applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-frequency fringe projection profilometry based on wavelet transform

Chao Jiang, Shuhai Jia, Jun Dong, Qin Lian, and Dichen Li
Opt. Express 24(11) 11323-11333 (2016)

Color-encoded fringe projection for 3D shape measurements

Wei-Hung Su
Opt. Express 15(20) 13167-13181 (2007)

Recovery of absolute height from wrapped phase maps for fringe projection profilometry

Yong Xu, Shuhai Jia, Qingchen Bao, Hualing Chen, and Jia Yang
Opt. Express 22(14) 16819-16828 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. D’Apuzzo, “Overview of 3D surface digitization technologies in Europe,” Proc. SPIE 6056, 605605 (2006).
    [Crossref]
  2. E. Li, X. Peng, J. Xi, J. Chicharo, J. Yao, and D. Zhang, “Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3D profilometry,” Opt. Express 13(5), 1561–1569 (2005).
    [Crossref] [PubMed]
  3. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23(18), 3105–3108 (1984).
    [Crossref]
  4. X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
    [Crossref]
  5. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22(24), 3977–3982 (1983).
    [Crossref] [PubMed]
  6. X. Y. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
    [Crossref]
  7. P. S. Huang and Q. Y. Hu, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
    [Crossref]
  8. W. H. Su, “Color-encoded fringe projection for 3D shape measurements,” Opt. Express 15(20), 13167–13181 (2007).
    [Crossref] [PubMed]
  9. Y. H. Yeh, I. C. Chang, C. L. Huang, W.-J. Hsueh, H.-C. Lin, and C.-C. Chen, etc., “A new fast and high-resolution 3D imaging system with color structured light,” Proc. SPIE 4925, 645–654 (2002).
    [Crossref]
  10. Z. H. Zhang, D. P. Towers, and C. E. Towers, “Snapshot color fringe projection for absolute three-dimensional metrology of video sequences,” Appl. Opt. 49(31), 5947–5953 (2010).
    [Crossref]
  11. S. Zhang and S. T. Yau, “Simultaneous three-dimensional geometry and color texture acquisition using a single color camera,” Opt. Eng. 47(12), 123604 (2008).
    [Crossref]
  12. F. Da and H. Huang, “A novel color fringe projection based Fourier transform 3D shape measurement method,” Optik (Stuttg.) 123(24), 2233–2237 (2012).
    [Crossref]
  13. Z. Zhang, C. E. Towers, and D. P. Towers, “Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection,” Opt. Express 14(14), 6444–6455 (2006).
    [Crossref] [PubMed]
  14. H. J. Chen, J. Zhang, and J. Fang, “Surface height retrieval based on fringe shifting of color-encoded structured light pattern,” Opt. Lett. 33(16), 1801–1803 (2008).
    [Crossref] [PubMed]
  15. J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
    [Crossref]
  16. Y. Xu, S. H. Jia, X. Luo, J. Yang, and Y. Zhang, “Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities,” Opt. Commun. 288, 27–30 (2013).
    [Crossref]
  17. Y. Xu, S. Jia, Q. Bao, H. Chen, and J. Yang, “Recovery of absolute height from wrapped phase maps for fringe projection profilometry,” Opt. Express 22(14), 16819–16828 (2014).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

Y. Xu, S. H. Jia, X. Luo, J. Yang, and Y. Zhang, “Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities,” Opt. Commun. 288, 27–30 (2013).
[Crossref]

2012 (1)

F. Da and H. Huang, “A novel color fringe projection based Fourier transform 3D shape measurement method,” Optik (Stuttg.) 123(24), 2233–2237 (2012).
[Crossref]

2010 (1)

2008 (2)

S. Zhang and S. T. Yau, “Simultaneous three-dimensional geometry and color texture acquisition using a single color camera,” Opt. Eng. 47(12), 123604 (2008).
[Crossref]

H. J. Chen, J. Zhang, and J. Fang, “Surface height retrieval based on fringe shifting of color-encoded structured light pattern,” Opt. Lett. 33(16), 1801–1803 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

2005 (2)

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

E. Li, X. Peng, J. Xi, J. Chicharo, J. Yao, and D. Zhang, “Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3D profilometry,” Opt. Express 13(5), 1561–1569 (2005).
[Crossref] [PubMed]

2002 (1)

Y. H. Yeh, I. C. Chang, C. L. Huang, W.-J. Hsueh, H.-C. Lin, and C.-C. Chen, etc., “A new fast and high-resolution 3D imaging system with color structured light,” Proc. SPIE 4925, 645–654 (2002).
[Crossref]

2001 (1)

X. Y. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

1999 (1)

P. S. Huang and Q. Y. Hu, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

1992 (1)

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

1984 (1)

1983 (1)

Bao, Q.

Chang, I. C.

Y. H. Yeh, I. C. Chang, C. L. Huang, W.-J. Hsueh, H.-C. Lin, and C.-C. Chen, etc., “A new fast and high-resolution 3D imaging system with color structured light,” Proc. SPIE 4925, 645–654 (2002).
[Crossref]

Chen, C.-C.

Y. H. Yeh, I. C. Chang, C. L. Huang, W.-J. Hsueh, H.-C. Lin, and C.-C. Chen, etc., “A new fast and high-resolution 3D imaging system with color structured light,” Proc. SPIE 4925, 645–654 (2002).
[Crossref]

Chen, H.

Chen, H. J.

Chen, W.

X. Y. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

Chiang, F. P.

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

Chicharo, J.

D’Apuzzo, N.

N. D’Apuzzo, “Overview of 3D surface digitization technologies in Europe,” Proc. SPIE 6056, 605605 (2006).
[Crossref]

Da, F.

F. Da and H. Huang, “A novel color fringe projection based Fourier transform 3D shape measurement method,” Optik (Stuttg.) 123(24), 2233–2237 (2012).
[Crossref]

Fang, J.

Halioua, M.

Hsueh, W.-J.

Y. H. Yeh, I. C. Chang, C. L. Huang, W.-J. Hsueh, H.-C. Lin, and C.-C. Chen, etc., “A new fast and high-resolution 3D imaging system with color structured light,” Proc. SPIE 4925, 645–654 (2002).
[Crossref]

Hu, Q. Y.

P. S. Huang and Q. Y. Hu, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Huang, C. L.

Y. H. Yeh, I. C. Chang, C. L. Huang, W.-J. Hsueh, H.-C. Lin, and C.-C. Chen, etc., “A new fast and high-resolution 3D imaging system with color structured light,” Proc. SPIE 4925, 645–654 (2002).
[Crossref]

Huang, H.

F. Da and H. Huang, “A novel color fringe projection based Fourier transform 3D shape measurement method,” Optik (Stuttg.) 123(24), 2233–2237 (2012).
[Crossref]

Huang, P. S.

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

P. S. Huang and Q. Y. Hu, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Jia, S.

Jia, S. H.

Y. Xu, S. H. Jia, X. Luo, J. Yang, and Y. Zhang, “Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities,” Opt. Commun. 288, 27–30 (2013).
[Crossref]

Li, E.

Lin, H.-C.

Y. H. Yeh, I. C. Chang, C. L. Huang, W.-J. Hsueh, H.-C. Lin, and C.-C. Chen, etc., “A new fast and high-resolution 3D imaging system with color structured light,” Proc. SPIE 4925, 645–654 (2002).
[Crossref]

Liu, H. C.

Luo, X.

Y. Xu, S. H. Jia, X. Luo, J. Yang, and Y. Zhang, “Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities,” Opt. Commun. 288, 27–30 (2013).
[Crossref]

Mutoh, K.

Pan, J. H.

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

Peng, X.

Srinivasan, V.

Su, W. H.

Su, X. Y.

X. Y. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

Su, X.-Y.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Takeda, M.

Towers, C. E.

Towers, D. P.

von Bally, G.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Vukicevic, D.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Xi, J.

Xu, Y.

Y. Xu, S. Jia, Q. Bao, H. Chen, and J. Yang, “Recovery of absolute height from wrapped phase maps for fringe projection profilometry,” Opt. Express 22(14), 16819–16828 (2014).
[Crossref] [PubMed]

Y. Xu, S. H. Jia, X. Luo, J. Yang, and Y. Zhang, “Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities,” Opt. Commun. 288, 27–30 (2013).
[Crossref]

Yang, J.

Y. Xu, S. Jia, Q. Bao, H. Chen, and J. Yang, “Recovery of absolute height from wrapped phase maps for fringe projection profilometry,” Opt. Express 22(14), 16819–16828 (2014).
[Crossref] [PubMed]

Y. Xu, S. H. Jia, X. Luo, J. Yang, and Y. Zhang, “Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities,” Opt. Commun. 288, 27–30 (2013).
[Crossref]

Yao, J.

Yau, S. T.

S. Zhang and S. T. Yau, “Simultaneous three-dimensional geometry and color texture acquisition using a single color camera,” Opt. Eng. 47(12), 123604 (2008).
[Crossref]

Yeh, Y. H.

Y. H. Yeh, I. C. Chang, C. L. Huang, W.-J. Hsueh, H.-C. Lin, and C.-C. Chen, etc., “A new fast and high-resolution 3D imaging system with color structured light,” Proc. SPIE 4925, 645–654 (2002).
[Crossref]

Zhang, D.

Zhang, J.

Zhang, S.

S. Zhang and S. T. Yau, “Simultaneous three-dimensional geometry and color texture acquisition using a single color camera,” Opt. Eng. 47(12), 123604 (2008).
[Crossref]

Zhang, Y.

Y. Xu, S. H. Jia, X. Luo, J. Yang, and Y. Zhang, “Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities,” Opt. Commun. 288, 27–30 (2013).
[Crossref]

Zhang, Z.

Zhang, Z. H.

Zhou, W.-S.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Appl. Opt. (3)

Opt. Commun. (2)

Y. Xu, S. H. Jia, X. Luo, J. Yang, and Y. Zhang, “Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities,” Opt. Commun. 288, 27–30 (2013).
[Crossref]

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Opt. Eng. (3)

P. S. Huang and Q. Y. Hu, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

J. H. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

S. Zhang and S. T. Yau, “Simultaneous three-dimensional geometry and color texture acquisition using a single color camera,” Opt. Eng. 47(12), 123604 (2008).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

X. Y. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Lasers Eng. 35(5), 263–284 (2001).
[Crossref]

Opt. Lett. (1)

Optik (Stuttg.) (1)

F. Da and H. Huang, “A novel color fringe projection based Fourier transform 3D shape measurement method,” Optik (Stuttg.) 123(24), 2233–2237 (2012).
[Crossref]

Proc. SPIE (2)

Y. H. Yeh, I. C. Chang, C. L. Huang, W.-J. Hsueh, H.-C. Lin, and C.-C. Chen, etc., “A new fast and high-resolution 3D imaging system with color structured light,” Proc. SPIE 4925, 645–654 (2002).
[Crossref]

N. D’Apuzzo, “Overview of 3D surface digitization technologies in Europe,” Proc. SPIE 6056, 605605 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 System layout of our multi-frequency color marked fringe projection profilometry.
Fig. 2
Fig. 2 (a) The fringe pattern with a single frequency marked by blue. (b) The color map projected from the DMD projector.
Fig. 3
Fig. 3 (a) The optical geometry of the fringe projection profilometry with a single frequency. (b) The explanation of the coordinates in the measurement system.
Fig. 4
Fig. 4 The chromaticity curve of a column of x in the color map.
Fig. 5
Fig. 5 The schematic diagram of the x calculation.
Fig. 6
Fig. 6 Comparison between the chromaticity curves of the measured color and the simulated color in the x direction.
Fig. 7
Fig. 7 (a) An illustration of the correction method. (b) The chromaticity curves from the pixels in column 300 of the reference plane and the object surface without correction. (c) The chromaticity curves from the pixels in column 300 of the reference plane and the object surface after correction.
Fig. 8
Fig. 8 Simulation results for multi-frequency color-marked fringe projection profilometry. (a) The simulated hemisphere (with radius 100) to be measured. (b) The simulated color map reflected from the surface of the hemisphere. (c) The reconstructed 3D shape of the hemisphere. (d) The error between the simulated and reconstructed hemisphere.
Fig. 9
Fig. 9 (a) The object used in the experiment. (b) The color map reflected from the object. (c) The chromaticity curves of column 200 in the color maps of the reference plane and the object surface. (d) The reconstructed 3D shape of the object. (e) The section drawing of the reconstructed 3D shape of the object.
Fig. 10
Fig. 10 (a) The white mask used in the experiment. (b) The color map reflected from the object. (c) The chromaticity curves of column 234 in the color maps of the reference plane and the object surface. (d) The color image of the reconstructed result.

Tables (1)

Tables Icon

Table 1 The colors and corresponding frequency of the fringe patterns adopted in the experiment.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = a ( x , y ) + b ( x , y ) cos [ 2 π f 0 x + φ I ( x , y ) ] ,
R f 0 ( x , y ) = r f 0 · a ( x , y ) + r f 0 · b ( x , y ) cos [ 2 π f 0 x + φ I ( x , y ) ]
G f 0 ( x , y ) = g f 0 · a ( x , y ) + g f 0 · b ( x , y ) cos [ 2 π f 0 x + φ I ( x , y ) ]
B f 0 ( x , y ) = b f 0 · a ( x , y ) + b f 0 · b ( x , y ) cos [ 2 π f 0 x + φ I ( x , y ) ] ,
R I ( x , y ) = i = 1 7 R I f i ( x , y ) = i = 1 7 { r f i · a ( x , y ) + r f i · b ( x , y ) cos [ 2 π f i x + φ I i ( x , y ) ] }
G I ( x , y ) = i = 1 7 G I f i ( x , y ) = i = 1 7 { g f i · a ( x , y ) + g f i · b ( x , y ) cos [ 2 π f i x + φ I i ( x , y ) ] }
B I ( x , y ) = i = 1 7 B I f i ( x , y ) = i = 1 7 { b f i · a ( x , y ) + b f i · b ( x , y ) cos [ 2 π f i x + φ I i ( x , y ) ] } .
O ( x , y ) = a ( x , y ) + b ( x , y ) cos [ 2 π f 0 x + φ I ( x , y ) + Δ φ ( x , y ) ] .
Δ φ ( x , y ) = 2 π f 0 d · h ( x , y ) / l 0 .
O ( x , y ) = a ( x , y ) + b ( x , y ) cos [ 2 π f 0 ( x + d · H ( x , y ) / l 0 ) + φ I ( x , y ) ] .
R O ( x , y ) = i = 1 n R O f i ( x , y ) = i = 1 7 { r f i · a ( x , y ) + r f i · b ( x , y ) cos [ 2 π f i ( x + d · H ( x , y ) / l 0 ) + φ I i ( x , y ) ] }
G O ( x , y ) = i = 1 n G O f i ( x , y ) = i = 1 7 { g f i · a ( x , y ) + g f i · b ( x , y ) cos [ 2 π f i ( x + d · H ( x , y ) / l 0 ) + φ I i ( x , y ) ] }
B O ( x , y ) = i = 1 n B O f i ( x , y ) = i = 1 7 { b f i · a ( x , y ) + b f i · b ( x , y ) cos [ 2 π f i ( x + d · H ( x , y ) / l 0 ) + φ I i ( x , y ) ] } .
H ( x , y ) = Δ x · l 0 2 l 1 · d .
u , ( x ) = 11.075568 R ( x ) + 7.006992 G ( x ) + 4.52064 B ( x ) 17.768892 R ( x ) + 70.781772 G ( x ) + 18.814536 B ( x )
v , ( x ) = 9 R ( x ) + 41.3163 G ( x ) + 0.5409 B ( x ) 17.768892 R ( x ) + 70.781772 G ( x ) + 18.814536 B ( x ) ,

Metrics