Abstract

Strip-loaded waveguides were fabricated by the direct oxidation of a titanium film based on the single-crystal lithium niobate. The method avoided the surface roughness problems that are normally introduced during dry etching of waveguide sidewalls. Propagation modes of the composite strip waveguide were analyzed by a full-vectorial finite difference method. The minimum dimensions of the propagation modes were calculated to be 0.7 μm2 and 1.1 μm2 for quasi-TM mode and quasi-TE mode at 1550 nm when the thickness of the LN layer and TiO2 strip was 660 nm and 95 nm, respectively. The optical intensity was as high as 93% and was well confined in the LN layer for quasi-TM polarization. In this experiment, the propagation losses for the composite strip waveguide with 6 μm wide TiO2 were 14 dB/cm for quasi-TM mode and 5.8 dB/cm for quasi-TE mode, respectively. The compact hybrid structures have the potential to be utilized for compact photonic integrated devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Amorphous silicon-lithium niobate thin film strip-loaded waveguides

Yiwen Wang, Zhihua Chen, Lutong Cai, Yunpeng Jiang, Houbin Zhu, and Hui Hu
Opt. Mater. Express 7(11) 4018-4028 (2017)

Waveguides in single-crystal lithium niobate thin film by proton exchange

Lutong Cai, Shuang Li Huangpu Han, and Hui Hu
Opt. Express 23(2) 1240-1248 (2015)

Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film

Lutong Cai, Ruirui Kong, Yiwen Wang, and Hui Hu
Opt. Express 23(22) 29211-29221 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  2. F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009).
    [Crossref] [PubMed]
  3. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [Crossref]
  4. P. Rabiei and P. Günter, “Optical and electro-optical properties of sub-micrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
    [Crossref]
  5. W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
    [Crossref]
  6. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
    [Crossref] [PubMed]
  7. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
    [Crossref] [PubMed]
  8. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
    [Crossref] [PubMed]
  9. R. Y. Wang and S. A. Bhave, “Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators,” http://arxiv.org/abs/1409.6351 (2014).
  10. L. Cai, H. Han, S. Zhang, H. Hu, and K. Wang, “Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator,” Opt. Lett. 39(7), 2094–2096 (2014).
    [Crossref] [PubMed]
  11. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  12. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
    [Crossref] [PubMed]
  13. L. Cai, S. L. H. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23(2), 1240–1248 (2015).
    [Crossref] [PubMed]
  14. C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, and W. Sohler, “Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates,” Proc. SPIE 8982, 89821G (2014).
    [Crossref]
  15. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  16. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum,” Opt. Express 21(6), 6967–6972 (2013).
    [Crossref] [PubMed]
  17. J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20(21), 23821–23831 (2012).
    [Crossref] [PubMed]
  18. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28(16), 3303–3317 (1989).
    [Crossref] [PubMed]
  19. W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
    [Crossref]
  20. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
    [Crossref] [PubMed]
  21. N. Uchida, “Optical waveguide loaded with high refractive-index strip film,” Appl. Opt. 15(1), 179–182 (1976).
    [Crossref] [PubMed]
  22. K. Ogusu, S. Kawakami, and S. Nishida, “Optical strip waveguide: an analysis,” Appl. Opt. 18(6), 908–914 (1979).
    [Crossref] [PubMed]
  23. K. Ogusu and I. Tanaka, “Optical strip waveguide: an experiment,” Appl. Opt. 19(19), 3322–3325 (1980).
    [Crossref] [PubMed]
  24. K. Suzuki, K. Ogusu, and M. Minakata, “Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices,” Opt. Express 13(21), 8634–8641 (2005).
    [Crossref] [PubMed]
  25. N. Goto and G. L. Yip, “Characterization of proton-exchange and annealed LiNbO(3) waveguides with pyrophosphoric acid,” Appl. Opt. 28(1), 60–65 (1989).
    [Crossref] [PubMed]
  26. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
    [Crossref]
  27. R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  28. J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006).
    [Crossref] [PubMed]

2015 (2)

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

L. Cai, S. L. H. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23(2), 1240–1248 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (4)

2012 (3)

2009 (2)

2006 (1)

2005 (2)

K. Suzuki, K. Ogusu, and M. Minakata, “Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices,” Opt. Express 13(21), 8634–8641 (2005).
[Crossref] [PubMed]

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

2004 (1)

P. Rabiei and P. Günter, “Optical and electro-optical properties of sub-micrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

2002 (1)

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

1989 (2)

1987 (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

1980 (1)

1979 (1)

1976 (1)

Albrand, G.

Allen, T. H.

Atikian, H. A.

Baida, F. I.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

Bakhru, H.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Bennett, J. M.

Bernal, M. P.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

Bernal, M.-P.

Borgogno, J. P.

Bradley, J. D. B.

Brown, T.

Burek, M. J.

Cai, L.

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Carniglia, C. K.

Chen, L.

Chiles, J.

Choy, J. T.

Collet, M.

Courjal, N.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Das, B.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

Deotare, P. B.

Dey, D.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

Dierolf, V.

C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, and W. Sohler, “Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates,” Proc. SPIE 8982, 89821G (2014).
[Crossref]

Evans, C. C.

Fathpour, S.

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Gischkat, T.

Goto, N.

Guenther, K. H.

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

P. Rabiei and P. Günter, “Optical and electro-optical properties of sub-micrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

Guyot, C.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

Hameed, N. M.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

Han, H.

Han, S. L. H.

Hartung, H.

Höche, T.

Hu, H.

L. Cai, S. L. H. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23(2), 1240–1248 (2015).
[Crossref] [PubMed]

L. Cai, H. Han, S. Zhang, H. Hu, and K. Wang, “Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator,” Opt. Lett. 39(7), 2094–2096 (2014).
[Crossref] [PubMed]

C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, and W. Sohler, “Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates,” Proc. SPIE 8982, 89821G (2014).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

Huang, I.-C.

Kawakami, S.

Khan, S.

Kip, D.

C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, and W. Sohler, “Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates,” Proc. SPIE 8982, 89821G (2014).
[Crossref]

Kley, E.-B.

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Lazarides, B.

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Lin, Z.

Lipson, M.

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Loncar, M.

Lu, H.

Ma, J.

Maillotte, H.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

Mazur, E.

Minakata, M.

Ndao, A.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

Nishida, S.

Ogusu, K.

Osgood, R. M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Parsy, F.

Pelletier, E.

Phillips, K. C.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Preble, S. F.

Qiu, W.

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

Rabiei, P.

Reano, R. M.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Reshef, O.

Reza, S.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

Ricken, R.

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Robinson, J. T.

Rüter, C. E.

C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, and W. Sohler, “Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates,” Proc. SPIE 8982, 89821G (2014).
[Crossref]

Sadani, B.

Saxer, A.

Schmell, R. A.

Schrempel, F.

Smith, N.

Sohler, W.

C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, and W. Sohler, “Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates,” Proc. SPIE 8982, 89821G (2014).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Stark, P.

Stenger, V.

Stone, G.

C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, and W. Sohler, “Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates,” Proc. SPIE 8982, 89821G (2014).
[Crossref]

Suche, H.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

Suntsov, S.

C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, and W. Sohler, “Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates,” Proc. SPIE 8982, 89821G (2014).
[Crossref]

Suzuki, K.

Tanaka, I.

Tünnermann, A.

Tuttle-Hart, T.

Uchida, N.

Ulliac, G.

Venkataraman, V.

Wang, C.

Wang, K.

Wesch, W.

Wood, M. G.

Yip, G. L.

Zhang, S.

Zhu, Z.

Appl. Opt. (5)

Appl. Phys. B (2)

W. Qiu, M. P. Bernal, A. Ndao, C. Guyot, N. M. Hameed, N. Courjal, H. Maillotte, and F. I. Baida, “Analysis of ultra-compact waveguide modes in thin film lithium niobate,” Appl. Phys. B 118(2), 261–267 (2015).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (2)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

P. Rabiei and P. Günter, “Optical and electro-optical properties of sub-micrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85(20), 4603–4605 (2004).
[Crossref]

IEICE Trans. Electron. (1)

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88-C(5), 990–997 (2005).
[Crossref]

J. Lightwave Technol. (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Opt. Express (12)

Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
[Crossref] [PubMed]

K. Suzuki, K. Ogusu, and M. Minakata, “Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices,” Opt. Express 13(21), 8634–8641 (2005).
[Crossref] [PubMed]

J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006).
[Crossref] [PubMed]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref] [PubMed]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20(3), 2974–2981 (2012).
[Crossref] [PubMed]

J. D. B. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Lončar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices,” Opt. Express 20(21), 23821–23831 (2012).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum,” Opt. Express 21(6), 6967–6972 (2013).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref] [PubMed]

L. Cai, S. L. H. Han, and H. Hu, “Waveguides in single-crystal lithium niobate thin film by proton exchange,” Opt. Express 23(2), 1240–1248 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, and W. Sohler, “Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates,” Proc. SPIE 8982, 89821G (2014).
[Crossref]

Other (1)

R. Y. Wang and S. A. Bhave, “Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators,” http://arxiv.org/abs/1409.6351 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematics of the waveguide structure cross-section. The structures from the bottom to the top are LN substrate, SiO2 cladding, LN layer, and TiO2 loading strip.
Fig. 2
Fig. 2 (a) Single mode condition for the composite strip waveguide simulated at 1550 nm for different thickness values of the LN guiding layer; (b) Single mode condition for the composite strip waveguide simulated at 1550 nm for different thicknesses of the TiO2 loading strip.
Fig. 3
Fig. 3 (a) Relationship between the calculated mode size and width of the TiO2 strip for quasi-TM mode; inset: a mode size as small as 0.7 μm2 was obtained with a 1 μm wide TiO2 strip; (b) Relationship between the calculated mode size and width of the TiO2 strip for quasi-TE mode; inset: a mode size as small as 1.07 μm2 with a 1.3 μm wide TiO2 strip.
Fig. 4
Fig. 4 (a) Relationship between optical power in the LiNbO3 layer and the thickness and the width of the TiO2 strip as well as the relationship between optical power in the TiO2 strip and the thickness of the TiO2 strip for quasi-TM mode; (b) Relationship between optical powers in LiNbO3 layer and the thickness and the width of TiO2 strip as well as the relationship between optical powers in the TiO2 strip and the thickness of the TiO2 strip for quasi-TE mode.
Fig. 5
Fig. 5 The process steps of directed oxidation of titanium to form LN strip waveguide.
Fig. 6
Fig. 6 (a) SEM image of a cross-section of a fabricated waveguide via the DORM method; (b) Optical microscope image (top view) of a 6 μm wide TiO2 strip loaded on top of the LN layer; (c) Ti concentration as a function of depth obtained by SIMS in a TiO2/ LNOI sample annealed at 500 °C for 15 h in dry O2 atmosphere. The TiO2 film was about 190 nm thick.
Fig. 7
Fig. 7 Measured and simulated near-field intensity distributions of the fundamental quasi-TM mode (a) and quasi-TE mode (b) guided in the 6 μm wide composite strip waveguides at 1.55 μm. Mode sizes of the 4.3 μm2 (quasi-TM mode) and 4.5 μm2 (quasi-TE mode) were obtained by measurement and mode sizes of 2.1 μm2 and 2.5 μm2 were obtained by simulation.
Fig. 8
Fig. 8 (a) Normalized transmission of quasi-TM polarized light in the 6 μm composite strip waveguides as a function of wavelength; (b) Normalized transmission of quasi-TE polarized light in the 6 μm composite strip waveguides as a function of wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = 4.34 L ( ln R ln R ˜ ) w i t h R = 1 K ( 1 1 K 2 ) a n d K = I max I min I max I min

Metrics