Abstract

In this study, we report our finding of laser-induced resistance effect in metal-oxide-semiconductor (MOS) structure of Cr/SiO2/Si. Under the irradiation of a laser beam, the effect shows a large linear resistance change ratio of 92% with a spatial sensitivity of 0.79 MΩ/mm. In particular, by the application of an external magnetic field perpendicular to the Cr film, the resistance change ratio is increased to 110%. This effect is attributed to the Lorentz force acting on the photo-generated carriers in the inversion layer of MOS structures. The work suggests an approach for the development of new type magnetically modulated photoelectric devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang
Opt. Express 16(6) 3798-3806 (2008)

Lateral photovoltaic effect and electron transport observed in Cr nano-film

Shuai Liu, Xin Xie, and Hui Wang
Opt. Express 22(10) 11627-11632 (2014)

Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film

Liang Du and Hui Wang
Opt. Express 18(9) 9113-9118 (2010)

References

  • View by:
  • |
  • |
  • |

  1. V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, “Superconductivity in dense lithium,” Science 298(5596), 1213–1215 (2002).
    [Crossref] [PubMed]
  2. B. J. Taylor and M. B. Maple, “Formula for the Critical Temperature of Superconductors Based on the Electronic Density of States and the Effective Mass,” Phys. Rev. Lett. 102(13), 137003 (2009).
    [Crossref] [PubMed]
  3. A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
    [Crossref] [PubMed]
  4. C. Rao and A. Cheetham, “Giant magnetoresistance in transition metal oxides,” Science 272(5260), 369–370 (1996).
    [Crossref]
  5. R. Xu, A. Husmann, T. Rosenbaum, M.-L. Saboungi, J. Enderby, and P. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature 390(6655), 57–60 (1997).
    [Crossref]
  6. F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, “Giant magnetoresistance in ultrasmall graphene based devices,” Phys. Rev. Lett. 102(13), 136810 (2009).
    [Crossref] [PubMed]
  7. M. H. Tang, Z. Z. Zhang, Y. Y. Zhu, B. Ma, and Q. Y. Jin, “Role of TbFe on Perpendicular Magnetic Anisotropy and Giant Magnetoresistance Effect in [Co/Ni]N-Based Spin Valve,” Nano-Micro Lett. 6(4), 359–364 (2014).
    [Crossref]
  8. C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO2/Si,” Adv. Mater. 22(9), 966–970 (2010).
    [Crossref] [PubMed]
  9. C. Q. Yu and H. Wang, “Bias-induced offset effect overlapped on bipolar-resistance effect based on Co/SiO2/Si structure,” Appl. Phys. Lett. 97(4), 041105 (2010).
    [Crossref]
  10. S. Liu, X. Xie, and H. Wang, “Lateral photovoltaic effect and electron transport observed in Cr nano-film,” Opt. Express 22(10), 11627–11632 (2014).
    [Crossref] [PubMed]
  11. S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures,” Opt. Express 16(6), 3798–3806 (2008).
    [Crossref] [PubMed]
  12. C. Q. Yu, H. Wang, S. Q. Xiao, and Y. X. Xia, “Direct observation of lateral photovoltaic effect in nano-metal-films,” Opt. Express 17(24), 21712–21722 (2009).
    [Crossref] [PubMed]
  13. B. Zhang, L. Du, and H. Wang, “Bias-assisted improved lateral photovoltaic effect observed in Cu2O nano-films,” Opt. Express 22(2), 1661–1666 (2014).
    [Crossref] [PubMed]
  14. L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu 2 O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
    [Crossref] [PubMed]
  15. H. Wang, S. Q. Xiao, C. Q. Yu, Y. X. Xia, Q. Y. Jin, and Z. H. Wang, “Correlation of magnetoresistance and lateral photovoltage in Co3Mn2O/SiO2/Si metal–oxide–semiconductor structure,” New J. Phys. 10(9), 093006 (2008).
    [Crossref]
  16. R. S. Markiewicz and L. A. Harris, “Two-Dimensional Resistivity of Ultrathin Metal Films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
    [Crossref]
  17. S. Liu, P. Cheng, and H. Wang, “Bipolar resistance effect observed in CdSe quantum-dots dominated structure of Zn/CdSe/Si,” Opt. Lett. 37(11), 1814–1816 (2012).
    [Crossref] [PubMed]
  18. P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
    [Crossref] [PubMed]
  19. N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
    [Crossref]
  20. J. Dai, L. Spinu, K. Y. Wang, L. Malkinski, and J. Tang, “Channel switching and magnetoresistance of a metal-SiO2-Si structure,” J. Phys. D Appl. Phys. 33(11), L65–L67 (2000).
    [Crossref]
  21. J. Tang, J. Dai, K. Wang, W. Zhou, N. Ruzycki, and U. Diebold, “Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate,” J. Appl. Phys. 91(10), 8411–8413 (2002).
    [Crossref]
  22. H. B. de Carvalho, M. J. S. P. Brasil, J. C. Denardin, and M. Knobel, “Transport and Magnetotransport transition of thin Co films grown on Si,” Phys. Status Solidi A 201(10), 2361–2365 (2004).
    [Crossref]
  23. H. B. de Carvalho, M. J. S. P. Brasil, M. Knobel, and J. C. Denardin, “Magnetotransport and electric properties of Co–SiO2–Si structure,” J. Magn. Magn. Mater. 272, 1157–1159 (2004).
    [Crossref]
  24. V. N. Dobrovolsky and A. N. Krolevets, “Theory of magnetic-field-sensitive metal–oxide–semiconductor field-effect transistors,” J. Appl. Phys. 85(3), 1956 (1999).
    [Crossref]

2014 (3)

2012 (1)

2010 (3)

L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu 2 O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
[Crossref] [PubMed]

C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO2/Si,” Adv. Mater. 22(9), 966–970 (2010).
[Crossref] [PubMed]

C. Q. Yu and H. Wang, “Bias-induced offset effect overlapped on bipolar-resistance effect based on Co/SiO2/Si structure,” Appl. Phys. Lett. 97(4), 041105 (2010).
[Crossref]

2009 (4)

B. J. Taylor and M. B. Maple, “Formula for the Critical Temperature of Superconductors Based on the Electronic Density of States and the Effective Mass,” Phys. Rev. Lett. 102(13), 137003 (2009).
[Crossref] [PubMed]

A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
[Crossref] [PubMed]

F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, “Giant magnetoresistance in ultrasmall graphene based devices,” Phys. Rev. Lett. 102(13), 136810 (2009).
[Crossref] [PubMed]

C. Q. Yu, H. Wang, S. Q. Xiao, and Y. X. Xia, “Direct observation of lateral photovoltaic effect in nano-metal-films,” Opt. Express 17(24), 21712–21722 (2009).
[Crossref] [PubMed]

2008 (2)

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures,” Opt. Express 16(6), 3798–3806 (2008).
[Crossref] [PubMed]

H. Wang, S. Q. Xiao, C. Q. Yu, Y. X. Xia, Q. Y. Jin, and Z. H. Wang, “Correlation of magnetoresistance and lateral photovoltage in Co3Mn2O/SiO2/Si metal–oxide–semiconductor structure,” New J. Phys. 10(9), 093006 (2008).
[Crossref]

2004 (2)

H. B. de Carvalho, M. J. S. P. Brasil, J. C. Denardin, and M. Knobel, “Transport and Magnetotransport transition of thin Co films grown on Si,” Phys. Status Solidi A 201(10), 2361–2365 (2004).
[Crossref]

H. B. de Carvalho, M. J. S. P. Brasil, M. Knobel, and J. C. Denardin, “Magnetotransport and electric properties of Co–SiO2–Si structure,” J. Magn. Magn. Mater. 272, 1157–1159 (2004).
[Crossref]

2002 (2)

J. Tang, J. Dai, K. Wang, W. Zhou, N. Ruzycki, and U. Diebold, “Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate,” J. Appl. Phys. 91(10), 8411–8413 (2002).
[Crossref]

V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, “Superconductivity in dense lithium,” Science 298(5596), 1213–1215 (2002).
[Crossref] [PubMed]

2000 (1)

J. Dai, L. Spinu, K. Y. Wang, L. Malkinski, and J. Tang, “Channel switching and magnetoresistance of a metal-SiO2-Si structure,” J. Phys. D Appl. Phys. 33(11), L65–L67 (2000).
[Crossref]

1999 (1)

V. N. Dobrovolsky and A. N. Krolevets, “Theory of magnetic-field-sensitive metal–oxide–semiconductor field-effect transistors,” J. Appl. Phys. 85(3), 1956 (1999).
[Crossref]

1998 (1)

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

1997 (1)

R. Xu, A. Husmann, T. Rosenbaum, M.-L. Saboungi, J. Enderby, and P. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature 390(6655), 57–60 (1997).
[Crossref]

1996 (1)

C. Rao and A. Cheetham, “Giant magnetoresistance in transition metal oxides,” Science 272(5260), 369–370 (1996).
[Crossref]

1992 (1)

P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
[Crossref] [PubMed]

1981 (1)

R. S. Markiewicz and L. A. Harris, “Two-Dimensional Resistivity of Ultrathin Metal Films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
[Crossref]

Amato, A.

A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
[Crossref] [PubMed]

Andreica, D.

A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
[Crossref] [PubMed]

Antoniadis, D. A.

P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
[Crossref] [PubMed]

Bagwell, P. F.

P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
[Crossref] [PubMed]

Baines, C.

A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
[Crossref] [PubMed]

Beaumont, S. P.

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

Brasil, M. J. S. P.

H. B. de Carvalho, M. J. S. P. Brasil, J. C. Denardin, and M. Knobel, “Transport and Magnetotransport transition of thin Co films grown on Si,” Phys. Status Solidi A 201(10), 2361–2365 (2004).
[Crossref]

H. B. de Carvalho, M. J. S. P. Brasil, M. Knobel, and J. C. Denardin, “Magnetotransport and electric properties of Co–SiO2–Si structure,” J. Magn. Magn. Mater. 272, 1157–1159 (2004).
[Crossref]

Cheetham, A.

C. Rao and A. Cheetham, “Giant magnetoresistance in transition metal oxides,” Science 272(5260), 369–370 (1996).
[Crossref]

Cheng, P.

Dai, J.

J. Tang, J. Dai, K. Wang, W. Zhou, N. Ruzycki, and U. Diebold, “Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate,” J. Appl. Phys. 91(10), 8411–8413 (2002).
[Crossref]

J. Dai, L. Spinu, K. Y. Wang, L. Malkinski, and J. Tang, “Channel switching and magnetoresistance of a metal-SiO2-Si structure,” J. Phys. D Appl. Phys. 33(11), L65–L67 (2000).
[Crossref]

de Carvalho, H. B.

H. B. de Carvalho, M. J. S. P. Brasil, J. C. Denardin, and M. Knobel, “Transport and Magnetotransport transition of thin Co films grown on Si,” Phys. Status Solidi A 201(10), 2361–2365 (2004).
[Crossref]

H. B. de Carvalho, M. J. S. P. Brasil, M. Knobel, and J. C. Denardin, “Magnetotransport and electric properties of Co–SiO2–Si structure,” J. Magn. Magn. Mater. 272, 1157–1159 (2004).
[Crossref]

de Nijs, D. E.

A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
[Crossref] [PubMed]

de Visser, A.

A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
[Crossref] [PubMed]

Denardin, J. C.

H. B. de Carvalho, M. J. S. P. Brasil, M. Knobel, and J. C. Denardin, “Magnetotransport and electric properties of Co–SiO2–Si structure,” J. Magn. Magn. Mater. 272, 1157–1159 (2004).
[Crossref]

H. B. de Carvalho, M. J. S. P. Brasil, J. C. Denardin, and M. Knobel, “Transport and Magnetotransport transition of thin Co films grown on Si,” Phys. Status Solidi A 201(10), 2361–2365 (2004).
[Crossref]

Diebold, U.

J. Tang, J. Dai, K. Wang, W. Zhou, N. Ruzycki, and U. Diebold, “Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate,” J. Appl. Phys. 91(10), 8411–8413 (2002).
[Crossref]

Dobrovolsky, V. N.

V. N. Dobrovolsky and A. N. Krolevets, “Theory of magnetic-field-sensitive metal–oxide–semiconductor field-effect transistors,” J. Appl. Phys. 85(3), 1956 (1999).
[Crossref]

Du, L.

Enderby, J.

R. Xu, A. Husmann, T. Rosenbaum, M.-L. Saboungi, J. Enderby, and P. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature 390(6655), 57–60 (1997).
[Crossref]

Eremets, M. I.

V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, “Superconductivity in dense lithium,” Science 298(5596), 1213–1215 (2002).
[Crossref] [PubMed]

Fernández-Rossier, J.

F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, “Giant magnetoresistance in ultrasmall graphene based devices,” Phys. Rev. Lett. 102(13), 136810 (2009).
[Crossref] [PubMed]

Gallagher, B. L.

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

Gan, W.

V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, “Superconductivity in dense lithium,” Science 298(5596), 1213–1215 (2002).
[Crossref] [PubMed]

Gasparini, A.

A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
[Crossref] [PubMed]

Gu, Y. Z.

Harris, L. A.

R. S. Markiewicz and L. A. Harris, “Two-Dimensional Resistivity of Ultrathin Metal Films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
[Crossref]

Hemley, R. J.

V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, “Superconductivity in dense lithium,” Science 298(5596), 1213–1215 (2002).
[Crossref] [PubMed]

Henini, M.

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

Howson, M. A.

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

Husmann, A.

R. Xu, A. Husmann, T. Rosenbaum, M.-L. Saboungi, J. Enderby, and P. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature 390(6655), 57–60 (1997).
[Crossref]

Huy, N. T.

A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
[Crossref] [PubMed]

Jin, Q. Y.

M. H. Tang, Z. Z. Zhang, Y. Y. Zhu, B. Ma, and Q. Y. Jin, “Role of TbFe on Perpendicular Magnetic Anisotropy and Giant Magnetoresistance Effect in [Co/Ni]N-Based Spin Valve,” Nano-Micro Lett. 6(4), 359–364 (2014).
[Crossref]

H. Wang, S. Q. Xiao, C. Q. Yu, Y. X. Xia, Q. Y. Jin, and Z. H. Wang, “Correlation of magnetoresistance and lateral photovoltage in Co3Mn2O/SiO2/Si metal–oxide–semiconductor structure,” New J. Phys. 10(9), 093006 (2008).
[Crossref]

Kastner, M. A.

P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
[Crossref] [PubMed]

Knobel, M.

H. B. de Carvalho, M. J. S. P. Brasil, J. C. Denardin, and M. Knobel, “Transport and Magnetotransport transition of thin Co films grown on Si,” Phys. Status Solidi A 201(10), 2361–2365 (2004).
[Crossref]

H. B. de Carvalho, M. J. S. P. Brasil, M. Knobel, and J. C. Denardin, “Magnetotransport and electric properties of Co–SiO2–Si structure,” J. Magn. Magn. Mater. 272, 1157–1159 (2004).
[Crossref]

Krolevets, A. N.

V. N. Dobrovolsky and A. N. Krolevets, “Theory of magnetic-field-sensitive metal–oxide–semiconductor field-effect transistors,” J. Appl. Phys. 85(3), 1956 (1999).
[Crossref]

Littlewood, P.

R. Xu, A. Husmann, T. Rosenbaum, M.-L. Saboungi, J. Enderby, and P. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature 390(6655), 57–60 (1997).
[Crossref]

Liu, S.

Ma, B.

M. H. Tang, Z. Z. Zhang, Y. Y. Zhu, B. Ma, and Q. Y. Jin, “Role of TbFe on Perpendicular Magnetic Anisotropy and Giant Magnetoresistance Effect in [Co/Ni]N-Based Spin Valve,” Nano-Micro Lett. 6(4), 359–364 (2014).
[Crossref]

Main, P. C.

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

Malkinski, L.

J. Dai, L. Spinu, K. Y. Wang, L. Malkinski, and J. Tang, “Channel switching and magnetoresistance of a metal-SiO2-Si structure,” J. Phys. D Appl. Phys. 33(11), L65–L67 (2000).
[Crossref]

Mao, H. K.

V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, “Superconductivity in dense lithium,” Science 298(5596), 1213–1215 (2002).
[Crossref] [PubMed]

Maple, M. B.

B. J. Taylor and M. B. Maple, “Formula for the Critical Temperature of Superconductors Based on the Electronic Density of States and the Effective Mass,” Phys. Rev. Lett. 102(13), 137003 (2009).
[Crossref] [PubMed]

Markiewicz, R. S.

R. S. Markiewicz and L. A. Harris, “Two-Dimensional Resistivity of Ultrathin Metal Films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
[Crossref]

Marrows, C. H.

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

Muñoz-Rojas, F.

F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, “Giant magnetoresistance in ultrasmall graphene based devices,” Phys. Rev. Lett. 102(13), 136810 (2009).
[Crossref] [PubMed]

Nogaret, A.

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

Orlando, T. P.

P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
[Crossref] [PubMed]

Overend, N.

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

Palacios, J. J.

F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, “Giant magnetoresistance in ultrasmall graphene based devices,” Phys. Rev. Lett. 102(13), 136810 (2009).
[Crossref] [PubMed]

Park, S. L.

P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
[Crossref] [PubMed]

Rao, C.

C. Rao and A. Cheetham, “Giant magnetoresistance in transition metal oxides,” Science 272(5260), 369–370 (1996).
[Crossref]

Rosenbaum, T.

R. Xu, A. Husmann, T. Rosenbaum, M.-L. Saboungi, J. Enderby, and P. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature 390(6655), 57–60 (1997).
[Crossref]

Ruzycki, N.

J. Tang, J. Dai, K. Wang, W. Zhou, N. Ruzycki, and U. Diebold, “Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate,” J. Appl. Phys. 91(10), 8411–8413 (2002).
[Crossref]

Saboungi, M.-L.

R. Xu, A. Husmann, T. Rosenbaum, M.-L. Saboungi, J. Enderby, and P. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature 390(6655), 57–60 (1997).
[Crossref]

Smith, H. I.

P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
[Crossref] [PubMed]

Spinu, L.

J. Dai, L. Spinu, K. Y. Wang, L. Malkinski, and J. Tang, “Channel switching and magnetoresistance of a metal-SiO2-Si structure,” J. Phys. D Appl. Phys. 33(11), L65–L67 (2000).
[Crossref]

Struzhkin, V. V.

V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, “Superconductivity in dense lithium,” Science 298(5596), 1213–1215 (2002).
[Crossref] [PubMed]

Tang, J.

J. Tang, J. Dai, K. Wang, W. Zhou, N. Ruzycki, and U. Diebold, “Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate,” J. Appl. Phys. 91(10), 8411–8413 (2002).
[Crossref]

J. Dai, L. Spinu, K. Y. Wang, L. Malkinski, and J. Tang, “Channel switching and magnetoresistance of a metal-SiO2-Si structure,” J. Phys. D Appl. Phys. 33(11), L65–L67 (2000).
[Crossref]

Tang, M. H.

M. H. Tang, Z. Z. Zhang, Y. Y. Zhu, B. Ma, and Q. Y. Jin, “Role of TbFe on Perpendicular Magnetic Anisotropy and Giant Magnetoresistance Effect in [Co/Ni]N-Based Spin Valve,” Nano-Micro Lett. 6(4), 359–364 (2014).
[Crossref]

Taylor, B. J.

B. J. Taylor and M. B. Maple, “Formula for the Critical Temperature of Superconductors Based on the Electronic Density of States and the Effective Mass,” Phys. Rev. Lett. 102(13), 137003 (2009).
[Crossref] [PubMed]

Wang, H.

B. Zhang, L. Du, and H. Wang, “Bias-assisted improved lateral photovoltaic effect observed in Cu2O nano-films,” Opt. Express 22(2), 1661–1666 (2014).
[Crossref] [PubMed]

S. Liu, X. Xie, and H. Wang, “Lateral photovoltaic effect and electron transport observed in Cr nano-film,” Opt. Express 22(10), 11627–11632 (2014).
[Crossref] [PubMed]

S. Liu, P. Cheng, and H. Wang, “Bipolar resistance effect observed in CdSe quantum-dots dominated structure of Zn/CdSe/Si,” Opt. Lett. 37(11), 1814–1816 (2012).
[Crossref] [PubMed]

L. Du and H. Wang, “Infrared laser induced lateral photovoltaic effect observed in Cu 2 O nanoscale film,” Opt. Express 18(9), 9113–9118 (2010).
[Crossref] [PubMed]

C. Q. Yu and H. Wang, “Bias-induced offset effect overlapped on bipolar-resistance effect based on Co/SiO2/Si structure,” Appl. Phys. Lett. 97(4), 041105 (2010).
[Crossref]

C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO2/Si,” Adv. Mater. 22(9), 966–970 (2010).
[Crossref] [PubMed]

C. Q. Yu, H. Wang, S. Q. Xiao, and Y. X. Xia, “Direct observation of lateral photovoltaic effect in nano-metal-films,” Opt. Express 17(24), 21712–21722 (2009).
[Crossref] [PubMed]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures,” Opt. Express 16(6), 3798–3806 (2008).
[Crossref] [PubMed]

H. Wang, S. Q. Xiao, C. Q. Yu, Y. X. Xia, Q. Y. Jin, and Z. H. Wang, “Correlation of magnetoresistance and lateral photovoltage in Co3Mn2O/SiO2/Si metal–oxide–semiconductor structure,” New J. Phys. 10(9), 093006 (2008).
[Crossref]

Wang, K.

J. Tang, J. Dai, K. Wang, W. Zhou, N. Ruzycki, and U. Diebold, “Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate,” J. Appl. Phys. 91(10), 8411–8413 (2002).
[Crossref]

Wang, K. Y.

J. Dai, L. Spinu, K. Y. Wang, L. Malkinski, and J. Tang, “Channel switching and magnetoresistance of a metal-SiO2-Si structure,” J. Phys. D Appl. Phys. 33(11), L65–L67 (2000).
[Crossref]

Wang, Z. H.

H. Wang, S. Q. Xiao, C. Q. Yu, Y. X. Xia, Q. Y. Jin, and Z. H. Wang, “Correlation of magnetoresistance and lateral photovoltage in Co3Mn2O/SiO2/Si metal–oxide–semiconductor structure,” New J. Phys. 10(9), 093006 (2008).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures,” Opt. Express 16(6), 3798–3806 (2008).
[Crossref] [PubMed]

Xia, Y. X.

Xiao, S. Q.

Xie, X.

Xu, R.

R. Xu, A. Husmann, T. Rosenbaum, M.-L. Saboungi, J. Enderby, and P. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature 390(6655), 57–60 (1997).
[Crossref]

Yen, A.

P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
[Crossref] [PubMed]

Yu, C.

C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO2/Si,” Adv. Mater. 22(9), 966–970 (2010).
[Crossref] [PubMed]

Yu, C. Q.

C. Q. Yu and H. Wang, “Bias-induced offset effect overlapped on bipolar-resistance effect based on Co/SiO2/Si structure,” Appl. Phys. Lett. 97(4), 041105 (2010).
[Crossref]

C. Q. Yu, H. Wang, S. Q. Xiao, and Y. X. Xia, “Direct observation of lateral photovoltaic effect in nano-metal-films,” Opt. Express 17(24), 21712–21722 (2009).
[Crossref] [PubMed]

H. Wang, S. Q. Xiao, C. Q. Yu, Y. X. Xia, Q. Y. Jin, and Z. H. Wang, “Correlation of magnetoresistance and lateral photovoltage in Co3Mn2O/SiO2/Si metal–oxide–semiconductor structure,” New J. Phys. 10(9), 093006 (2008).
[Crossref]

Zhang, B.

Zhang, Z. Z.

M. H. Tang, Z. Z. Zhang, Y. Y. Zhu, B. Ma, and Q. Y. Jin, “Role of TbFe on Perpendicular Magnetic Anisotropy and Giant Magnetoresistance Effect in [Co/Ni]N-Based Spin Valve,” Nano-Micro Lett. 6(4), 359–364 (2014).
[Crossref]

Zhao, Z. C.

Zhou, W.

J. Tang, J. Dai, K. Wang, W. Zhou, N. Ruzycki, and U. Diebold, “Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate,” J. Appl. Phys. 91(10), 8411–8413 (2002).
[Crossref]

Zhu, Y. Y.

M. H. Tang, Z. Z. Zhang, Y. Y. Zhu, B. Ma, and Q. Y. Jin, “Role of TbFe on Perpendicular Magnetic Anisotropy and Giant Magnetoresistance Effect in [Co/Ni]N-Based Spin Valve,” Nano-Micro Lett. 6(4), 359–364 (2014).
[Crossref]

Adv. Mater. (1)

C. Yu and H. Wang, “Light-induced bipolar-resistance effect based on metal-oxide-semiconductor structures of Ti/SiO2/Si,” Adv. Mater. 22(9), 966–970 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

C. Q. Yu and H. Wang, “Bias-induced offset effect overlapped on bipolar-resistance effect based on Co/SiO2/Si structure,” Appl. Phys. Lett. 97(4), 041105 (2010).
[Crossref]

N. Overend, A. Nogaret, B. L. Gallagher, P. C. Main, M. Henini, C. H. Marrows, M. A. Howson, and S. P. Beaumont, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/ semiconductor devices,” Appl. Phys. Lett. 72(14), 1724–1726 (1998).
[Crossref]

J. Appl. Phys. (2)

J. Tang, J. Dai, K. Wang, W. Zhou, N. Ruzycki, and U. Diebold, “Current-controlled channel switching and magnetoresistance in an Fe3C island film supported on a Si substrate,” J. Appl. Phys. 91(10), 8411–8413 (2002).
[Crossref]

V. N. Dobrovolsky and A. N. Krolevets, “Theory of magnetic-field-sensitive metal–oxide–semiconductor field-effect transistors,” J. Appl. Phys. 85(3), 1956 (1999).
[Crossref]

J. Magn. Magn. Mater. (1)

H. B. de Carvalho, M. J. S. P. Brasil, M. Knobel, and J. C. Denardin, “Magnetotransport and electric properties of Co–SiO2–Si structure,” J. Magn. Magn. Mater. 272, 1157–1159 (2004).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Dai, L. Spinu, K. Y. Wang, L. Malkinski, and J. Tang, “Channel switching and magnetoresistance of a metal-SiO2-Si structure,” J. Phys. D Appl. Phys. 33(11), L65–L67 (2000).
[Crossref]

Nano-Micro Lett. (1)

M. H. Tang, Z. Z. Zhang, Y. Y. Zhu, B. Ma, and Q. Y. Jin, “Role of TbFe on Perpendicular Magnetic Anisotropy and Giant Magnetoresistance Effect in [Co/Ni]N-Based Spin Valve,” Nano-Micro Lett. 6(4), 359–364 (2014).
[Crossref]

Nature (1)

R. Xu, A. Husmann, T. Rosenbaum, M.-L. Saboungi, J. Enderby, and P. Littlewood, “Large magnetoresistance in non-magnetic silver chalcogenides,” Nature 390(6655), 57–60 (1997).
[Crossref]

New J. Phys. (1)

H. Wang, S. Q. Xiao, C. Q. Yu, Y. X. Xia, Q. Y. Jin, and Z. H. Wang, “Correlation of magnetoresistance and lateral photovoltage in Co3Mn2O/SiO2/Si metal–oxide–semiconductor structure,” New J. Phys. 10(9), 093006 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

P. F. Bagwell, S. L. Park, A. Yen, D. A. Antoniadis, H. I. Smith, T. P. Orlando, and M. A. Kastner, “Magnetotransport in multiple narrow silicon inversion channels opened electrostatically into a two-dimensional electron gas,” Phys. Rev. B Condens. Matter 45(16), 9214–9221 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

R. S. Markiewicz and L. A. Harris, “Two-Dimensional Resistivity of Ultrathin Metal Films,” Phys. Rev. Lett. 46(17), 1149–1153 (1981).
[Crossref]

F. Muñoz-Rojas, J. Fernández-Rossier, and J. J. Palacios, “Giant magnetoresistance in ultrasmall graphene based devices,” Phys. Rev. Lett. 102(13), 136810 (2009).
[Crossref] [PubMed]

B. J. Taylor and M. B. Maple, “Formula for the Critical Temperature of Superconductors Based on the Electronic Density of States and the Effective Mass,” Phys. Rev. Lett. 102(13), 137003 (2009).
[Crossref] [PubMed]

A. de Visser, N. T. Huy, A. Gasparini, D. E. de Nijs, D. Andreica, C. Baines, and A. Amato, “Muon Spin Rotation and Relaxation in the Superconducting Ferromagnet UCoGe,” Phys. Rev. Lett. 102(16), 167003 (2009).
[Crossref] [PubMed]

Phys. Status Solidi A (1)

H. B. de Carvalho, M. J. S. P. Brasil, J. C. Denardin, and M. Knobel, “Transport and Magnetotransport transition of thin Co films grown on Si,” Phys. Status Solidi A 201(10), 2361–2365 (2004).
[Crossref]

Science (2)

C. Rao and A. Cheetham, “Giant magnetoresistance in transition metal oxides,” Science 272(5260), 369–370 (1996).
[Crossref]

V. V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, “Superconductivity in dense lithium,” Science 298(5596), 1213–1215 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Measurement diagram of laser-induced resistance. (b) Laser-induced resistance on metal side as a function of laser (635 nm and 5 mW) position in Cr(4.5 nm)/SiO2(1.2 nm)/Si structure with AB = 1mm. The lines are linear fitting.
Fig. 2
Fig. 2 (a) The laser-induced resistance change ratio and spatial sensitivity with different AB distance and Cr thickness of 4.5 mm. The lines are linear fitting. (b) The laser-induced resistance change ratio and spatial sensitivity with different Cr thickness and AB = 1 mm. The lines are B-spline fitting.
Fig. 3
Fig. 3 (a) Measurement diagram of laser-induced resistance effect with external magnetic field applied. (b) The resistance change ratio with different Cr thickness. The lines are B-spline fitting. The inset shows peak value of resistance change ratio modulated by magnetic field.
Fig. 4
Fig. 4 (a) Schematic diffusion model in the Cr/SiO2/Si structure. (b) Schematic simple equilibrium energy-band diagram of the Cr/SiO2/Si structure. Egi and Egs denote the bandgaps of SiO2 and Si, respectively. Φmi is the metal-to-insulator barrier height and is related to the work function of Cr. Φsi is the semiconductor-to-insulator barrier height and is related to the work function of Si.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ R R 0 R 0 × 100 %

Metrics