Abstract

A microwave photonic filter is demonstrated with both tunable center frequency and bandwidth. This filter is switchable from all-pass, bandpass to notch filter, and the notch filter is a result of the subtraction of a bandpass filter from an all-pass filter based on a balanced photodetector. The all-pass filter is achieved based on a single wavelength radio over fiber link, and the bandpass one is acquired by using the spectrum-sliced broadband optical source. Theoretical analysis and experimental results show that both the center frequency and the bandwidth of the notch filter can be widely tuned.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable notch microwave photonic filter based on interferometry of a single low-incoherence source

Jun Wen, Difei Shi, Zhiyao Jia, Ming Li, Ninghua Zhu, and Wei Li
Appl. Opt. 58(29) 8039-8045 (2019)

Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source

Long Huang, Dalei Chen, Fangzheng Zhang, Peng Xiang, Tingting Zhang, Peng Wang, Linlin Lu, Tao Pu, and Xiangfei Chen
Opt. Express 23(20) 25539-25552 (2015)

Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source

Xiaoxiao Xue, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Opt. Express 19(19) 18423-18429 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  2. E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
    [Crossref] [PubMed]
  3. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
    [Crossref]
  4. T. X. H. Huang, X. Yi, and R. A. Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express 19(7), 6231–6242 (2011).
    [Crossref] [PubMed]
  5. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
    [Crossref]
  6. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  7. D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photonics Technol. Lett. 13(7), 726–728 (2001).
    [Crossref]
  8. E. H. W. Chan and R. A. Minasian, “Novel all-optical RF notch filters with equivalent negative tap response,” IEEE Photonics Technol. Lett. 16(5), 1370–1372 (2004).
    [Crossref]
  9. W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
    [Crossref]
  10. X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283(15), 3026–3029 (2010).
    [Crossref]
  11. E. H. W. Chan and R. A. Minasian, “Widely tunable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol. 26(8), 922–927 (2008).
    [Crossref]
  12. Y. Yu, E. Xu, J. Dong, L. Zhou, X. Li, and X. Zhang, “Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation,” Opt. Express 18(24), 25271–25282 (2010).
    [Crossref] [PubMed]
  13. D. Marpaung, B. Morrison, R. Pant, and B. J. Eggleton, “Frequency agile microwave photonic notch filter with anomalously high stopband rejection,” Opt. Lett. 38(21), 4300–4303 (2013).
    [Crossref] [PubMed]
  14. Y. Wang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “Continuously tunable flat-passband microwave photonic notch filter based on primary and secondary tap distribution impulse response,” IEEE Photonics J. 7(1), 5500311 (2015).
    [Crossref]
  15. M. Pagani, E. H. W. Chan, and R. A. Minasian, “A study of the linearity performance of a stimulated Brillouin scattering-based microwave photonic bandpass filter,” J. Lightwave Technol. 32(5), 999–1005 (2014).
    [Crossref]
  16. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
    [Crossref]
  17. D. Guang-Hua and E. Gorgiev, “Non-white photodetection noise at the output of an optical amplifier: Theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
    [Crossref]
  18. M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
    [Crossref]
  19. D. Zou, J. Liao, X. Zheng, S. Li, H. Zhang, and B. Zhou, “Widely tunable microwave photonic filter with improved dynamic range,” in 19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology (ACOFT). (Engineers Australia, 2014), pp. 195–197.

2015 (1)

Y. Wang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “Continuously tunable flat-passband microwave photonic notch filter based on primary and secondary tap distribution impulse response,” IEEE Photonics J. 7(1), 5500311 (2015).
[Crossref]

2014 (1)

2013 (3)

2012 (1)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

2011 (1)

2010 (4)

E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
[Crossref] [PubMed]

Y. Yu, E. Xu, J. Dong, L. Zhou, X. Li, and X. Zhang, “Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation,” Opt. Express 18(24), 25271–25282 (2010).
[Crossref] [PubMed]

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283(15), 3026–3029 (2010).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

2009 (1)

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

2008 (1)

2006 (1)

2004 (1)

E. H. W. Chan and R. A. Minasian, “Novel all-optical RF notch filters with equivalent negative tap response,” IEEE Photonics Technol. Lett. 16(5), 1370–1372 (2004).
[Crossref]

2001 (2)

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photonics Technol. Lett. 13(7), 726–728 (2001).
[Crossref]

D. Guang-Hua and E. Gorgiev, “Non-white photodetection noise at the output of an optical amplifier: Theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
[Crossref]

1997 (1)

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photonics Technol. Lett. 13(7), 726–728 (2001).
[Crossref]

Chan, E. H. W.

Y. Wang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “Continuously tunable flat-passband microwave photonic notch filter based on primary and secondary tap distribution impulse response,” IEEE Photonics J. 7(1), 5500311 (2015).
[Crossref]

M. Pagani, E. H. W. Chan, and R. A. Minasian, “A study of the linearity performance of a stimulated Brillouin scattering-based microwave photonic bandpass filter,” J. Lightwave Technol. 32(5), 999–1005 (2014).
[Crossref]

E. H. W. Chan and R. A. Minasian, “Widely tunable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol. 26(8), 922–927 (2008).
[Crossref]

E. H. W. Chan and R. A. Minasian, “Novel all-optical RF notch filters with equivalent negative tap response,” IEEE Photonics Technol. Lett. 16(5), 1370–1372 (2004).
[Crossref]

Cole, M. J.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Dong, J.

Y. Yu, E. Xu, J. Dong, L. Zhou, X. Li, and X. Zhang, “Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation,” Opt. Express 18(24), 25271–25282 (2010).
[Crossref] [PubMed]

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283(15), 3026–3029 (2010).
[Crossref]

Durkin, M.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Eggleton, B. J.

Feng, X.

Y. Wang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “Continuously tunable flat-passband microwave photonic notch filter based on primary and secondary tap distribution impulse response,” IEEE Photonics J. 7(1), 5500311 (2015).
[Crossref]

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Gasulla, I.

Gorgiev, E.

D. Guang-Hua and E. Gorgiev, “Non-white photodetection noise at the output of an optical amplifier: Theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
[Crossref]

Guan, B.

Y. Wang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “Continuously tunable flat-passband microwave photonic notch filter based on primary and secondary tap distribution impulse response,” IEEE Photonics J. 7(1), 5500311 (2015).
[Crossref]

Guang-Hua, D.

D. Guang-Hua and E. Gorgiev, “Non-white photodetection noise at the output of an optical amplifier: Theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
[Crossref]

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Huang, D.

Huang, T. X. H.

Ibsen, M.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Laming, R. I.

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Li, X.

Lloret, J.

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Marpaung, D.

Minasian, R. A.

Mora, J.

Mork, J.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

Morrison, B.

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photonics Technol. Lett. 13(7), 726–728 (2001).
[Crossref]

Pagani, M.

Pant, R.

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photonics Technol. Lett. 13(7), 726–728 (2001).
[Crossref]

Sales, S.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

Sancho, J.

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Wang, X.

Y. Wang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “Continuously tunable flat-passband microwave photonic notch filter based on primary and secondary tap distribution impulse response,” IEEE Photonics J. 7(1), 5500311 (2015).
[Crossref]

Wang, Y.

Y. Wang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “Continuously tunable flat-passband microwave photonic notch filter based on primary and secondary tap distribution impulse response,” IEEE Photonics J. 7(1), 5500311 (2015).
[Crossref]

Weiner, A. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Xu, E.

Xue, W.

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

Xue, X.

Yi, X.

Yu, Y.

Zhang, H.

Zhang, X.

Zhang, Y.

Zheng, X.

Zhou, B.

Zhou, L.

Electron. Lett. (1)

M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33(22), 1891–1893 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Guang-Hua and E. Gorgiev, “Non-white photodetection noise at the output of an optical amplifier: Theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
[Crossref]

IEEE Photonics J. (1)

Y. Wang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “Continuously tunable flat-passband microwave photonic notch filter based on primary and secondary tap distribution impulse response,” IEEE Photonics J. 7(1), 5500311 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photonics Technol. Lett. 13(7), 726–728 (2001).
[Crossref]

E. H. W. Chan and R. A. Minasian, “Novel all-optical RF notch filters with equivalent negative tap response,” IEEE Photonics Technol. Lett. 16(5), 1370–1372 (2004).
[Crossref]

W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photonics Technol. Lett. 21(3), 167–169 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

J. Lightwave Technol. (5)

Nat. Photonics (1)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Opt. Commun. (1)

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283(15), 3026–3029 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

D. Zou, J. Liao, X. Zheng, S. Li, H. Zhang, and B. Zhou, “Widely tunable microwave photonic filter with improved dynamic range,” in 19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology (ACOFT). (Engineers Australia, 2014), pp. 195–197.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematic diagram. SSB: Single-side-band modulator.
Fig. 2
Fig. 2 The principle for the notch filter.
Fig. 3
Fig. 3 Simulation result with two notches.
Fig. 4
Fig. 4 Experimental setup. PC: polarization controller.
Fig. 5
Fig. 5 Optical spectrum and frequency response. (a) Spectra at Port A, (b) Port B, (c) Port C. (d) notch filter (e) all-pass filter (f) bandpass filter.
Fig. 6
Fig. 6 Phase response for the notch filter.
Fig. 7
Fig. 7 Amplitude response with tunable center frequency. (a) Bandpass filters. (b) Notch filters.
Fig. 8
Fig. 8 Optical spectrum with the BOS.
Fig. 9
Fig. 9 Frequency response with tunable bandwidth.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( ω ) = P 0 δ ( ω ω 0 ) + 1 2 [ E ( ω ) + E ( ω ) e j ω τ ]
E ( ω + ω 1 ) E * ( ω ) = 2 π N ( ω ) δ ( ω 1 )
E 2 ( ω ) = E 1 ( ω ) + m E 1 ( ω + Ω )
E 3 ( ω ) = [ E 1 ( ω ) + m E 1 ( ω + Ω ) ] Φ ( ω )
E b ( ω ) = P 0 { δ ( ω ω 0 ) + m δ ( ω ω 0 + Ω ) } Φ ( ω ) e j ω τ 0
E c ( ω ) = 1 2 { E ( ω ) + E ( ω ) e j ω τ + m E ( ω + Ω ) + m E ( ω + Ω ) e j ( ω + Ω ) τ } Φ ( ω )
i ( t ) = 0 + E b ( ω ) e j ω t d ω 2 0 + E c ( ω ) e j ω t d ω 2
E i ( ω i ) = 2 π ( + E c ( ω + ω i ) E c ( ω ) d ω + E b ( ω + ω i ) E b ( ω ) d ω )
H ( Ω ) e j β 2 L Ω 2 / 2 [ P 0 e j Ω ( β 2 L ω 0 + τ 0 ) ( H 0 ( Ω ) 1 2 H 0 ( Ω Ω 2 ) 1 2 H 0 ( Ω + Ω 2 ) ) ]
H 0 ( Ω ) = ω 1 ω 2 N ( ω ) exp ( j β 2 ω Ω ) d ω
ω 1 ω 2 N ( ω ) d ω = 2 P o
H 0 ( Ω 1 ) = H 0 ( 0 ) / 2

Metrics