Abstract

We present a laser based technique combined with the Talbot effect for microstructuring surfaces. The use of the Talbot effect is introduced as a solution to avoid damage of the periodic object used for micropattering different surfaces during the ablation process. The fabrication of two periodic objects (a mask and a microlens array) for micropattering surfaces and the identification of their Talbot planes is presented. A metal foil is ablated at distances corresponding to selected Talbot planes of the periodic objects. The setup allows us to design the desired pattern and the result is a multistructured surface with a high number of identical microholes, achieving a minimum diameter around 4μm. The different aspect of the periodic object working in direct contact and working at these Talbot distances is shown. These pictures reveal the advantages of working of using Talbot effect for a rapid, repeatable and no-contaminant multistructuring. Some industrial applications are illustrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser direct-write technique for fabricating microlens arrays on soda-lime glass with a Nd:YVO4 laser

Daniel Nieto, M. Teresa Flores-Arias, Gerard M. O’Connor, and Carlos Gomez-Reino
Appl. Opt. 49(26) 4979-4983 (2010)

Measurement of roughness based on the Talbot effect in reflection from rough surfaces

Masoomeh Dashtdar, Ali Mohammadzade, and S. Mohammad-Ali Hosseini-Saber
Appl. Opt. 54(16) 5210-5215 (2015)

Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source

Andreas Vetter, Raoul Kirner, Dmitrijs Opalevs, Matthias Scholz, Patrick Leisching, Toralf Scharf, Wilfried Noell, Carsten Rockstuhl, and Reinhard Voelkel
Opt. Express 26(17) 22218-22233 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. Romano, H. P. Weber, G. Dumitru, S. M. Pimenov, T. V. Kononenko, V. I. Konov, H. Haefke, Y. Gerbig, M. L. Sentis, J. Hermann, S. Bruneau, and W. Marine, “Laser surface microstructuring to improve tribological systems,” in Laser Processing of Advanced Materials and Laser Microtechnologies, F. Dausinger, ed. (SPIE, 2003), pp.199–211.
  2. D. Weibel, A. Michels, A. Feil, L. Amaral, S. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al sustrates by chemical surface funcionalization of nano/microstructures,” J. Phys. Chem. C 114(31), 13219–13225 (2010).
    [Crossref]
  3. N. C. Tien, S. Jeong, L. M. Phinney, K. Fushinobu, and J. Bokor, “Surface adhesion reduction in silicon microstructures using femtosecond laser pulses,” Appl. Phys. Lett. 68(2), 197–199 (1996).
    [Crossref]
  4. M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
    [Crossref] [PubMed]
  5. T. Akashi and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16(5), 1051–1056 (2006).
    [Crossref]
  6. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [Crossref] [PubMed]
  7. M. Mahbubur Razzaque and M. Tanvir Rahman Faisal, “Performance of Mechanical Face Seals with Surface Micropores,” J. Mech. Eng. 37(6), 77–80 (2008).
  8. S. P. Harimkar and N. B. Dahotre, “Rapid surface microstructuring of porous alumina ceramic using continuous wave Nd:YAG laser,” J. Mater. Process. Technol. 209(10), 4744–4749 (2009).
    [Crossref]
  9. I. Etsion, “State of the art in laser surface texturing,” J. Tribol. 127(1), 248–253 (2005).
    [Crossref]
  10. E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Rev. A 9(3), 949–957 (2001).
  11. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
    [Crossref]
  12. A. Piqué, S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou, “Embedding electroniccircuits by laserdirect-write,” Microelectron. Eng. 83(11-12), 2527–2533 (2006).
    [Crossref]
  13. J.-Y. Cheng, C.-W. Wei, K.-H. Hsu, and T.-H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sens. Actuators B Chem. 99(1), 186–196 (2004).
    [Crossref]
  14. N. Bityurin and A. Kuznetsov, “Use of harmonics for femtosecond micromachining in pure dielectrics,” J. Appl. Phys. 93(3), 1567–1576 (2003).
    [Crossref]
  15. J. Ihlemann, “Micro patterning of fused silica by laser ablation mediated by solid coating absorption,” Appl. Phys., A Mater. Sci. Process. 93(1), 65–68 (2008).
    [Crossref]
  16. A. Issa, D. Brabazon, and M. S. J. Hashmi, “3D transient thermal modelling of laser microchannel fabrication in lime-soda glass,” J. Mater. Process. Technol. 207(1-3), 307–314 (2008).
    [Crossref]
  17. D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).
  18. M. He, X. C. Yuan, N. Ngo, J. Bu, and S. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express 11(14), 1621–1627 (2003).
    [Crossref] [PubMed]
  19. Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
    [Crossref]
  20. Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
    [Crossref]
  21. C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
    [Crossref]
  22. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43(10), 2139–2164 (1996).
    [Crossref]
  23. A. W. Lohmann, D. Mendlovic, and G. Shabtay, “Talbot (1836), Montgomery (1967), Lau (1948) and Wolf (1955) on periodicity in optics,” Pure Appl. Opt. 7(5), 1121–1124 (1998).
    [Crossref]
  24. W. D. Montgomery, “Self-Imaging Objects on Infinite Aperture,” J. Opt. Soc. Am. 57(6), 772–778 (1967).
    [Crossref]
  25. T. Delgado, D. Nieto, and M. T. Flores-Arias, “Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a CO2 laser,” Opt. Lasers Eng. 73, 1–6 (2015).
    [Crossref]
  26. K. Patorski, “The Self-Imaging Phenomenon and its applications,” Prog. Opt. 27, 1–108 (1989).
    [Crossref]
  27. C. Gómez-Reino, M. V. Pérez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).
  28. B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
    [Crossref]
  29. B. E. A. Teich and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc. 1991).
  30. B. Besold and N. Lindlein, “Practical limitations of the Talbot imaging with microlens arrays,” Pure Appl. Opt. 6(6), 691–698 (1997).
    [Crossref]
  31. A. W. Lohmann, Optical Information Processing (Universität Erlangen-Nijberg, 1978), pp. 107–108.
  32. S. W. Zhang, “State-of-the-art of polymer tribology,” Tribol. Int. 31(1-3), 49–60 (1998).
    [Crossref]
  33. V. Ijeri, K. Shah, and S. Bane, “Chromium-free etching and palladium-free plating of plastics,” NASF Surf. Tech. White Pepers 78(12), 1–8 (2014).

2015 (1)

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a CO2 laser,” Opt. Lasers Eng. 73, 1–6 (2015).
[Crossref]

2014 (1)

V. Ijeri, K. Shah, and S. Bane, “Chromium-free etching and palladium-free plating of plastics,” NASF Surf. Tech. White Pepers 78(12), 1–8 (2014).

2012 (1)

D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).

2010 (1)

D. Weibel, A. Michels, A. Feil, L. Amaral, S. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al sustrates by chemical surface funcionalization of nano/microstructures,” J. Phys. Chem. C 114(31), 13219–13225 (2010).
[Crossref]

2009 (2)

2008 (4)

M. Mahbubur Razzaque and M. Tanvir Rahman Faisal, “Performance of Mechanical Face Seals with Surface Micropores,” J. Mech. Eng. 37(6), 77–80 (2008).

J. Ihlemann, “Micro patterning of fused silica by laser ablation mediated by solid coating absorption,” Appl. Phys., A Mater. Sci. Process. 93(1), 65–68 (2008).
[Crossref]

A. Issa, D. Brabazon, and M. S. J. Hashmi, “3D transient thermal modelling of laser microchannel fabrication in lime-soda glass,” J. Mater. Process. Technol. 207(1-3), 307–314 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

2007 (2)

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

2006 (2)

T. Akashi and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16(5), 1051–1056 (2006).
[Crossref]

A. Piqué, S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou, “Embedding electroniccircuits by laserdirect-write,” Microelectron. Eng. 83(11-12), 2527–2533 (2006).
[Crossref]

2005 (1)

I. Etsion, “State of the art in laser surface texturing,” J. Tribol. 127(1), 248–253 (2005).
[Crossref]

2004 (2)

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[Crossref]

J.-Y. Cheng, C.-W. Wei, K.-H. Hsu, and T.-H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sens. Actuators B Chem. 99(1), 186–196 (2004).
[Crossref]

2003 (3)

N. Bityurin and A. Kuznetsov, “Use of harmonics for femtosecond micromachining in pure dielectrics,” J. Appl. Phys. 93(3), 1567–1576 (2003).
[Crossref]

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

M. He, X. C. Yuan, N. Ngo, J. Bu, and S. Tao, “Low-cost and efficient coupling technique using reflowed sol-gel microlens,” Opt. Express 11(14), 1621–1627 (2003).
[Crossref] [PubMed]

2001 (1)

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Rev. A 9(3), 949–957 (2001).

1998 (2)

A. W. Lohmann, D. Mendlovic, and G. Shabtay, “Talbot (1836), Montgomery (1967), Lau (1948) and Wolf (1955) on periodicity in optics,” Pure Appl. Opt. 7(5), 1121–1124 (1998).
[Crossref]

S. W. Zhang, “State-of-the-art of polymer tribology,” Tribol. Int. 31(1-3), 49–60 (1998).
[Crossref]

1997 (2)

B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
[Crossref]

B. Besold and N. Lindlein, “Practical limitations of the Talbot imaging with microlens arrays,” Pure Appl. Opt. 6(6), 691–698 (1997).
[Crossref]

1996 (2)

N. C. Tien, S. Jeong, L. M. Phinney, K. Fushinobu, and J. Bokor, “Surface adhesion reduction in silicon microstructures using femtosecond laser pulses,” Appl. Phys. Lett. 68(2), 197–199 (1996).
[Crossref]

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43(10), 2139–2164 (1996).
[Crossref]

1989 (1)

K. Patorski, “The Self-Imaging Phenomenon and its applications,” Prog. Opt. 27, 1–108 (1989).
[Crossref]

1967 (1)

Akashi, T.

T. Akashi and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16(5), 1051–1056 (2006).
[Crossref]

Albero, J.

Amaral, L.

D. Weibel, A. Michels, A. Feil, L. Amaral, S. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al sustrates by chemical surface funcionalization of nano/microstructures,” J. Phys. Chem. C 114(31), 13219–13225 (2010).
[Crossref]

Arines, J.

D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).

Auyeung, R. C. Y.

A. Piqué, S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou, “Embedding electroniccircuits by laserdirect-write,” Microelectron. Eng. 83(11-12), 2527–2533 (2006).
[Crossref]

Bane, S.

V. Ijeri, K. Shah, and S. Bane, “Chromium-free etching and palladium-free plating of plastics,” NASF Surf. Tech. White Pepers 78(12), 1–8 (2014).

Berry, M. V.

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43(10), 2139–2164 (1996).
[Crossref]

Besold, B.

B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
[Crossref]

B. Besold and N. Lindlein, “Practical limitations of the Talbot imaging with microlens arrays,” Pure Appl. Opt. 6(6), 691–698 (1997).
[Crossref]

Bityurin, N.

N. Bityurin and A. Kuznetsov, “Use of harmonics for femtosecond micromachining in pure dielectrics,” J. Appl. Phys. 93(3), 1567–1576 (2003).
[Crossref]

Bokor, J.

N. C. Tien, S. Jeong, L. M. Phinney, K. Fushinobu, and J. Bokor, “Surface adhesion reduction in silicon microstructures using femtosecond laser pulses,” Appl. Phys. Lett. 68(2), 197–199 (1996).
[Crossref]

Brabazon, D.

A. Issa, D. Brabazon, and M. S. J. Hashmi, “3D transient thermal modelling of laser microchannel fabrication in lime-soda glass,” J. Mater. Process. Technol. 207(1-3), 307–314 (2008).
[Crossref]

Bu, J.

Chen, G. X.

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

Cheng, J.-Y.

J.-Y. Cheng, C.-W. Wei, K.-H. Hsu, and T.-H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sens. Actuators B Chem. 99(1), 186–196 (2004).
[Crossref]

Chong, T. C.

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

Coyne, E.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[Crossref]

Dahotre, N. B.

S. P. Harimkar and N. B. Dahotre, “Rapid surface microstructuring of porous alumina ceramic using continuous wave Nd:YAG laser,” J. Mater. Process. Technol. 209(10), 4744–4749 (2009).
[Crossref]

Delgado, T.

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a CO2 laser,” Opt. Lasers Eng. 73, 1–6 (2015).
[Crossref]

Díez, J. A.

D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).

Etsion, I.

I. Etsion, “State of the art in laser surface texturing,” J. Tribol. 127(1), 248–253 (2005).
[Crossref]

Feil, A.

D. Weibel, A. Michels, A. Feil, L. Amaral, S. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al sustrates by chemical surface funcionalization of nano/microstructures,” J. Phys. Chem. C 114(31), 13219–13225 (2010).
[Crossref]

Flores-Arias, M. T.

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a CO2 laser,” Opt. Lasers Eng. 73, 1–6 (2015).
[Crossref]

D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).

Fuh, J. Y. H.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

Fushinobu, K.

N. C. Tien, S. Jeong, L. M. Phinney, K. Fushinobu, and J. Bokor, “Surface adhesion reduction in silicon microstructures using femtosecond laser pulses,” Appl. Phys. Lett. 68(2), 197–199 (1996).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Rev. A 9(3), 949–957 (2001).

Glynn, T. J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[Crossref]

Gomez, V.

Gómez-Reino, C.

D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).

Gorecki, C.

Harimkar, S. P.

S. P. Harimkar and N. B. Dahotre, “Rapid surface microstructuring of porous alumina ceramic using continuous wave Nd:YAG laser,” J. Mater. Process. Technol. 209(10), 4744–4749 (2009).
[Crossref]

Hashmi, M. S. J.

A. Issa, D. Brabazon, and M. S. J. Hashmi, “3D transient thermal modelling of laser microchannel fabrication in lime-soda glass,” J. Mater. Process. Technol. 207(1-3), 307–314 (2008).
[Crossref]

He, M.

Hong, M. H.

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

Horowitz, F.

D. Weibel, A. Michels, A. Feil, L. Amaral, S. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al sustrates by chemical surface funcionalization of nano/microstructures,” J. Phys. Chem. C 114(31), 13219–13225 (2010).
[Crossref]

Hsu, K.-H.

J.-Y. Cheng, C.-W. Wei, K.-H. Hsu, and T.-H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sens. Actuators B Chem. 99(1), 186–196 (2004).
[Crossref]

Ihlemann, J.

J. Ihlemann, “Micro patterning of fused silica by laser ablation mediated by solid coating absorption,” Appl. Phys., A Mater. Sci. Process. 93(1), 65–68 (2008).
[Crossref]

Ijeri, V.

V. Ijeri, K. Shah, and S. Bane, “Chromium-free etching and palladium-free plating of plastics,” NASF Surf. Tech. White Pepers 78(12), 1–8 (2014).

Issa, A.

A. Issa, D. Brabazon, and M. S. J. Hashmi, “3D transient thermal modelling of laser microchannel fabrication in lime-soda glass,” J. Mater. Process. Technol. 207(1-3), 307–314 (2008).
[Crossref]

Jeong, S.

N. C. Tien, S. Jeong, L. M. Phinney, K. Fushinobu, and J. Bokor, “Surface adhesion reduction in silicon microstructures using femtosecond laser pulses,” Appl. Phys. Lett. 68(2), 197–199 (1996).
[Crossref]

Karns, B. J.

A. Piqué, S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou, “Embedding electroniccircuits by laserdirect-write,” Microelectron. Eng. 83(11-12), 2527–2533 (2006).
[Crossref]

Klein, S.

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43(10), 2139–2164 (1996).
[Crossref]

Kuznetsov, A.

N. Bityurin and A. Kuznetsov, “Use of harmonics for femtosecond micromachining in pure dielectrics,” J. Appl. Phys. 93(3), 1567–1576 (2003).
[Crossref]

Lakeou, S.

A. Piqué, S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou, “Embedding electroniccircuits by laserdirect-write,” Microelectron. Eng. 83(11-12), 2527–2533 (2006).
[Crossref]

Lim, C. S.

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

Lim, G. C.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

Lin, Y.

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

Lindlein, N.

B. Besold and N. Lindlein, “Practical limitations of the Talbot imaging with microlens arrays,” Pure Appl. Opt. 6(6), 691–698 (1997).
[Crossref]

B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
[Crossref]

Lohmann, A. W.

A. W. Lohmann, D. Mendlovic, and G. Shabtay, “Talbot (1836), Montgomery (1967), Lau (1948) and Wolf (1955) on periodicity in optics,” Pure Appl. Opt. 7(5), 1121–1124 (1998).
[Crossref]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Rev. A 9(3), 949–957 (2001).

Magee, J.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[Crossref]

Mahbubur Razzaque, M.

M. Mahbubur Razzaque and M. Tanvir Rahman Faisal, “Performance of Mechanical Face Seals with Surface Micropores,” J. Mech. Eng. 37(6), 77–80 (2008).

Mannion, P. T.

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[Crossref]

Mathews, S. A.

A. Piqué, S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou, “Embedding electroniccircuits by laserdirect-write,” Microelectron. Eng. 83(11-12), 2527–2533 (2006).
[Crossref]

Mendlovic, D.

A. W. Lohmann, D. Mendlovic, and G. Shabtay, “Talbot (1836), Montgomery (1967), Lau (1948) and Wolf (1955) on periodicity in optics,” Pure Appl. Opt. 7(5), 1121–1124 (1998).
[Crossref]

Michels, A.

D. Weibel, A. Michels, A. Feil, L. Amaral, S. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al sustrates by chemical surface funcionalization of nano/microstructures,” J. Phys. Chem. C 114(31), 13219–13225 (2010).
[Crossref]

Montgomery, W. D.

Ngo, N.

Nieradko, L.

Nieto, D.

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a CO2 laser,” Opt. Lasers Eng. 73, 1–6 (2015).
[Crossref]

D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).

O’Connor, G. M.

D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[Crossref]

Ottevaere, H.

Päivänranta, B.

Park, C.

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

Passilly, N.

Patorski, K.

K. Patorski, “The Self-Imaging Phenomenon and its applications,” Prog. Opt. 27, 1–108 (1989).
[Crossref]

Phinney, L. M.

N. C. Tien, S. Jeong, L. M. Phinney, K. Fushinobu, and J. Bokor, “Surface adhesion reduction in silicon microstructures using femtosecond laser pulses,” Appl. Phys. Lett. 68(2), 197–199 (1996).
[Crossref]

Pietarinen, J.

Piqué, A.

A. Piqué, S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou, “Embedding electroniccircuits by laserdirect-write,” Microelectron. Eng. 83(11-12), 2527–2533 (2006).
[Crossref]

Pratap, B.

A. Piqué, S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou, “Embedding electroniccircuits by laserdirect-write,” Microelectron. Eng. 83(11-12), 2527–2533 (2006).
[Crossref]

Rahman, M.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

Rode, A. V.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Rev. A 9(3), 949–957 (2001).

Senthil Kumar, A.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

Shabtay, G.

A. W. Lohmann, D. Mendlovic, and G. Shabtay, “Talbot (1836), Montgomery (1967), Lau (1948) and Wolf (1955) on periodicity in optics,” Pure Appl. Opt. 7(5), 1121–1124 (1998).
[Crossref]

Shah, K.

V. Ijeri, K. Shah, and S. Bane, “Chromium-free etching and palladium-free plating of plastics,” NASF Surf. Tech. White Pepers 78(12), 1–8 (2014).

Shi, L. P.

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

Tan, L. S.

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

Tanvir Rahman Faisal, M.

M. Mahbubur Razzaque and M. Tanvir Rahman Faisal, “Performance of Mechanical Face Seals with Surface Micropores,” J. Mech. Eng. 37(6), 77–80 (2008).

Tao, S.

Teixeira, S.

D. Weibel, A. Michels, A. Feil, L. Amaral, S. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al sustrates by chemical surface funcionalization of nano/microstructures,” J. Phys. Chem. C 114(31), 13219–13225 (2010).
[Crossref]

Thienpont, H.

Tien, N. C.

N. C. Tien, S. Jeong, L. M. Phinney, K. Fushinobu, and J. Bokor, “Surface adhesion reduction in silicon microstructures using femtosecond laser pulses,” Appl. Phys. Lett. 68(2), 197–199 (1996).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Rev. A 9(3), 949–957 (2001).

Vara, G.

D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).

Wang, Z. B.

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

Wei, C.-W.

J.-Y. Cheng, C.-W. Wei, K.-H. Hsu, and T.-H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sens. Actuators B Chem. 99(1), 186–196 (2004).
[Crossref]

Weibel, D.

D. Weibel, A. Michels, A. Feil, L. Amaral, S. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al sustrates by chemical surface funcionalization of nano/microstructures,” J. Phys. Chem. C 114(31), 13219–13225 (2010).
[Crossref]

Whitesides, G. M.

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

Wu, M. H.

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

Yoshimura, Y.

T. Akashi and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16(5), 1051–1056 (2006).
[Crossref]

Young, T.-H.

J.-Y. Cheng, C.-W. Wei, K.-H. Hsu, and T.-H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sens. Actuators B Chem. 99(1), 186–196 (2004).
[Crossref]

Yuan, X. C.

Zhang, S. W.

S. W. Zhang, “State-of-the-art of polymer tribology,” Tribol. Int. 31(1-3), 49–60 (1998).
[Crossref]

Appl. Phys. Lett. (1)

N. C. Tien, S. Jeong, L. M. Phinney, K. Fushinobu, and J. Bokor, “Surface adhesion reduction in silicon microstructures using femtosecond laser pulses,” Appl. Phys. Lett. 68(2), 197–199 (1996).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Ihlemann, “Micro patterning of fused silica by laser ablation mediated by solid coating absorption,” Appl. Phys., A Mater. Sci. Process. 93(1), 65–68 (2008).
[Crossref]

Appl. Surf. Sci. (1)

P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004).
[Crossref]

J. Alloys Compd. (1)

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, Z. B. Wang, L. S. Tan, L. P. Shi, and T. C. Chong, “Patterning of phase change films with microlens arrays,” J. Alloys Compd. 449(1-2), 253–257 (2008).
[Crossref]

J. Appl. Phys. (1)

N. Bityurin and A. Kuznetsov, “Use of harmonics for femtosecond micromachining in pure dielectrics,” J. Appl. Phys. 93(3), 1567–1576 (2003).
[Crossref]

J. Colloid Interface Sci. (1)

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

J. Mater. Process. Technol. (4)

S. P. Harimkar and N. B. Dahotre, “Rapid surface microstructuring of porous alumina ceramic using continuous wave Nd:YAG laser,” J. Mater. Process. Technol. 209(10), 4744–4749 (2009).
[Crossref]

A. Issa, D. Brabazon, and M. S. J. Hashmi, “3D transient thermal modelling of laser microchannel fabrication in lime-soda glass,” J. Mater. Process. Technol. 207(1-3), 307–314 (2008).
[Crossref]

Y. Lin, M. H. Hong, G. X. Chen, C. S. Lim, L. S. Tan, Z. B. Wang, L. P. Shi, and T. C. Chong, “Hybrid laser micro/nanofabrication of phase change materials with combination of chemical processing,” J. Mater. Process. Technol. 192-193, 340–345 (2007).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333 (2007).
[Crossref]

J. Mech. Eng. (1)

M. Mahbubur Razzaque and M. Tanvir Rahman Faisal, “Performance of Mechanical Face Seals with Surface Micropores,” J. Mech. Eng. 37(6), 77–80 (2008).

J. Micro/Nanolith, MEMES MOEMS (1)

D. Nieto, G. Vara, J. A. Díez, G. M. O’Connor, J. Arines, C. Gómez-Reino, and M. T. Flores-Arias, ““Laser-based microstructuring of surfaces using low cost microlens arrays,” J. Micro/Nanolith, MEMES MOEMS 11(2), 023014 (2012).

J. Micromech. Microeng. (1)

T. Akashi and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16(5), 1051–1056 (2006).
[Crossref]

J. Mod. Opt. (1)

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43(10), 2139–2164 (1996).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

D. Weibel, A. Michels, A. Feil, L. Amaral, S. Teixeira, and F. Horowitz, “Adjustable hydrophobicity of Al sustrates by chemical surface funcionalization of nano/microstructures,” J. Phys. Chem. C 114(31), 13219–13225 (2010).
[Crossref]

J. Tribol. (1)

I. Etsion, “State of the art in laser surface texturing,” J. Tribol. 127(1), 248–253 (2005).
[Crossref]

Microelectron. Eng. (1)

A. Piqué, S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou, “Embedding electroniccircuits by laserdirect-write,” Microelectron. Eng. 83(11-12), 2527–2533 (2006).
[Crossref]

NASF Surf. Tech. White Pepers (1)

V. Ijeri, K. Shah, and S. Bane, “Chromium-free etching and palladium-free plating of plastics,” NASF Surf. Tech. White Pepers 78(12), 1–8 (2014).

Opt. Eng. (1)

B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a CO2 laser,” Opt. Lasers Eng. 73, 1–6 (2015).
[Crossref]

Phys. Rev. A (1)

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Rev. A 9(3), 949–957 (2001).

Prog. Opt. (1)

K. Patorski, “The Self-Imaging Phenomenon and its applications,” Prog. Opt. 27, 1–108 (1989).
[Crossref]

Pure Appl. Opt. (2)

A. W. Lohmann, D. Mendlovic, and G. Shabtay, “Talbot (1836), Montgomery (1967), Lau (1948) and Wolf (1955) on periodicity in optics,” Pure Appl. Opt. 7(5), 1121–1124 (1998).
[Crossref]

B. Besold and N. Lindlein, “Practical limitations of the Talbot imaging with microlens arrays,” Pure Appl. Opt. 6(6), 691–698 (1997).
[Crossref]

Sens. Actuators B Chem. (1)

J.-Y. Cheng, C.-W. Wei, K.-H. Hsu, and T.-H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sens. Actuators B Chem. 99(1), 186–196 (2004).
[Crossref]

Tribol. Int. (1)

S. W. Zhang, “State-of-the-art of polymer tribology,” Tribol. Int. 31(1-3), 49–60 (1998).
[Crossref]

Other (4)

A. W. Lohmann, Optical Information Processing (Universität Erlangen-Nijberg, 1978), pp. 107–108.

B. E. A. Teich and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc. 1991).

C. Gómez-Reino, M. V. Pérez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).

V. Romano, H. P. Weber, G. Dumitru, S. M. Pimenov, T. V. Kononenko, V. I. Konov, H. Haefke, Y. Gerbig, M. L. Sentis, J. Hermann, S. Bruneau, and W. Marine, “Laser surface microstructuring to improve tribological systems,” in Laser Processing of Advanced Materials and Laser Microtechnologies, F. Dausinger, ed. (SPIE, 2003), pp.199–211.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 a) Experimental setup for the fabrication of the mask by a laser direct-write technique, b) experimental setup of the thermal treatment for achieving the microlenses array, c) confocal image of the microposts structure after the laser ablation and d) confocal image of the microlenses after the thermal treatment.
Fig. 2
Fig. 2 Experimental setup for the identification of the Talbot images when a periodic object is illuminated by a HeNe laser. The laser beam passes through a collimation system (formed by a 20X microscope objective; a spatial filter and a lens), that illuminates the periodic object. The image system acquisition for capturing the Talbot images is formed by a 20X microscope objective and a CCD camera. The image acquisition system is moved laterally to capture the different Talbot images.
Fig. 3
Fig. 3 Experimental setup for the identification of the Talbot images when a microlens array is illuminated by a HeNe laser. The collimation system is the same that this described in Fig. 2 as well as the image system acquisition. Note that the periodic object used for the Talbot effect is the focal plane of the microlens array.
Fig. 4
Fig. 4 CCD-images of the mask obtained with the experimental setup that employs a HeNe laser a) object, b) fifth Talbot plane, c) sixth Talbot plane and d) seventh Talbot plane.
Fig. 5
Fig. 5 CCD-images of the microlens array obtained with the experimental setup that employs a HeNe laser a) object, b) foci of the microlenses, c) sixth Talbot plane and d) eleventh Talbot plane.
Fig. 6
Fig. 6 Experimental setup for performing the surface ablation with a Nd:YAG laser and the mask. The laser beam passes through a convergent lens and illuminates the mask. The substrate is placed at the theoretical Talbot distances from the object.
Fig. 7
Fig. 7 Experimental setup for performing the surface ablation with a Nd:YAG laser and the microlens array. The laser beam passes through a convergent lens and illuminates the microlenses. The substrate is placed at the theoretical Talbot distances measured from the foci.
Fig. 8
Fig. 8 CCD-images of the mask obtained with the experimental setup that employs a Nd:YAG laser a) object, b) fifth Talbot plane, c) sixth Talbot plane and d) seventh Talbot plane.
Fig. 9
Fig. 9 CCD-images of the microlens array obtained with the experimental setup that employs a Nd:YAG laser a) object, b) foci of the microlenses, c) sixth Talbot plane and d) eleventh Talbot plane.
Fig. 10
Fig. 10 Images obtained after the ablation of a foil of stainless steel with thickness of 1mm using the mask when the surface is placed at a distance corresponding to a) the fifth Talbot plane, b) sixth Talbot plane and c) seventh Talbot plane from the object. The period p is indicated in the images. The images were obtained with a microscope in reflected mode and bright field.
Fig. 11
Fig. 11 Images of the microholes obtained after the ablation of a foil of stainless steel with thickness of 1mm using the foci of the microlenses when the surface is placed at a distance equal to a) the foci of the microlens, b) sixth Talbot plane and c) eleventh Talbot from the object. The period p is indicated in the images. The images were obtained with a microscope in reflected mode and bright field.
Fig. 12
Fig. 12 SEM images of one micropost when the microstructuring was performed at a) the Talbot planes presented in Fig. 10 and b) direct contact.
Fig. 13
Fig. 13 SEM images of one microlens when the microstructuring was performed at a) Talbot planes shown in Fig. 11 and b) the focal plane.
Fig. 14
Fig. 14 Images with a metallurgic microscope of the ablation over a) a 1mm thick stainless steel foil, b) a soda-lime glass substrate with a coat of cooper of 1μm of thickness and c) a polypropylene substrate of 0.5mm. Each substrate is placed at the sixth Talbot distance from the mask. The images were obtained with a microscope in reflected mode and bright field.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z T = n p 2 λ .
z = f M L + z T .
n p 2 λ = R z T R z T .
z T = R + R 2 4 R p 2 n / λ 2 .
z = f M L + z T .
M = R + z T R .

Metrics