Abstract

Chiral structures exhibit strong interactions with circularly polarized light, and have been demonstrated to show many polarization-dependent properties. Various chiral structures exhibit some level of circular dichroism, where right-handed and left-handed circularly polarized waves experience different transmission. In this study, we use a dielectric helix array as a model system to examine the interactions of circularly polarized light with helical structures. Our results show that circular polarization band gaps can be formed in a dielectric helix array not only by light having the same handedness with the structure but also by light with the opposite handedness, resulting from additional chiral motifs induced by the arrangement of helices. Dual polarization band gaps can thus be tailored by varying the geometrical parameters, and circular-polarization dependent properties can be manipulated for optoelectronic devices and applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization control with dielectric helix metasurfaces and arrays

Ilker Karakasoglu, Meng Xiao, and Shanhui Fan
Opt. Express 26(17) 21664-21674 (2018)

Origin and manipulation of band gaps in three-dimensional dielectric helix structures

Ho-Ting Tung, Yu-Kai Chen, Pei-Lun Jheng, and Yu-Chueh Hung
Opt. Express 25(15) 17627-17638 (2017)

Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials

Yu-Ray Li and Yu-Chueh Hung
Opt. Express 23(13) 16772-16781 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Lee and C. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13, 8083–8088 (2005).
    [Crossref] [PubMed]
  2. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
    [Crossref]
  3. M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
    [Crossref] [PubMed]
  4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [Crossref] [PubMed]
  5. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
    [Crossref] [PubMed]
  6. S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105, 051107 (2014).
    [Crossref]
  7. M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
    [Crossref] [PubMed]
  8. Y. Ye and S. He, “90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010).
    [Crossref]
  9. M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroeder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
    [Crossref]
  10. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quant. Electron. 27, 369–416 (2003).
    [Crossref]
  11. A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
    [Crossref]
  12. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
    [Crossref]
  13. A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
    [Crossref]
  14. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
    [Crossref]
  15. O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional pho-tonic band gap crystals,” Science 292, 1133–1135 (2001).
    [Crossref] [PubMed]
  16. Y. K. Pang, J. Lee, H. Lee, W. Y. Tam, C. Chan, and P. Sheng, “Chiral microstructures (spirals) fabrication by holographic lithography,” Opt. Express 13, 7615–7620 (2005).
    [Crossref] [PubMed]
  17. X. Wang, W. Gao, J. Hung, and W. Y. Tam, “Optical activities of large-area su8 microspirals fabricated by multibeam holographic lithography,” Appl. Opt. 53, 2425–2430 (2014).
    [Crossref] [PubMed]
  18. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
    [Crossref]
  19. S. Reyntjens and R. Puers, “Focused ion beam induced deposition: fabrication of three-dimensional microstructures and young’s modulus of the deposited material,” J. Micromech. Microeng. 10, 181 (2000).
    [Crossref]
  20. M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
    [Crossref] [PubMed]
  21. M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schröder-Turk, “Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure,” Mater. Today Proc. 1, 193–208 (2014).
    [Crossref]
  22. Lumerical FDTD solutions, http://www.lumerical.com
  23. M. Saba, M. D. Turner, K. Mecke, M. Gu, and G. E. Schröder-Turk, “Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets,” Phys. Rev. B 88, 245116 (2013).
    [Crossref]

2015 (1)

M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

2014 (3)

M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schröder-Turk, “Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure,” Mater. Today Proc. 1, 193–208 (2014).
[Crossref]

X. Wang, W. Gao, J. Hung, and W. Y. Tam, “Optical activities of large-area su8 microspirals fabricated by multibeam holographic lithography,” Appl. Opt. 53, 2425–2430 (2014).
[Crossref] [PubMed]

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105, 051107 (2014).
[Crossref]

2013 (3)

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroeder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
[Crossref]

M. Saba, M. D. Turner, K. Mecke, M. Gu, and G. E. Schröder-Turk, “Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets,” Phys. Rev. B 88, 245116 (2013).
[Crossref]

2011 (1)

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (2)

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

2007 (1)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

2005 (3)

2003 (1)

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quant. Electron. 27, 369–416 (2003).
[Crossref]

2001 (1)

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional pho-tonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

2000 (1)

S. Reyntjens and R. Puers, “Focused ion beam induced deposition: fabrication of three-dimensional microstructures and young’s modulus of the deposited material,” J. Micromech. Microeng. 10, 181 (2000).
[Crossref]

1999 (1)

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
[Crossref]

1997 (1)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[Crossref]

Arakawa, Y.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105, 051107 (2014).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Brett, M. J.

A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
[Crossref]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[Crossref]

Burger, S.

Chan, C.

Cumming, B. P.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroeder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Cuscuna, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Deubel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Esposito, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Fischer, H.

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Gao, W.

Genack, A. Z.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quant. Electron. 27, 369–416 (2003).
[Crossref]

Grosse-Brauckmann, K.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

Gu, M.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroeder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

M. Saba, M. D. Turner, K. Mecke, M. Gu, and G. E. Schröder-Turk, “Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets,” Phys. Rev. B 88, 245116 (2013).
[Crossref]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

He, S.

Y. Ye and S. He, “90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010).
[Crossref]

Hielscher, J.

M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schröder-Turk, “Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure,” Mater. Today Proc. 1, 193–208 (2014).
[Crossref]

Hung, J.

Hyde, S. T.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

Iwamoto, S.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105, 051107 (2014).
[Crossref]

John, S.

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional pho-tonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

Kopp, V. I.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quant. Electron. 27, 369–416 (2003).
[Crossref]

Lakhtakia, A.

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
[Crossref]

Lee, H.

Lee, J.

Linden, S.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

McCall, M.

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
[Crossref]

Mecke, K.

M. Saba, M. D. Turner, K. Mecke, M. Gu, and G. E. Schröder-Turk, “Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets,” Phys. Rev. B 88, 245116 (2013).
[Crossref]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

Neshev, D. N.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

Ota, Y.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105, 051107 (2014).
[Crossref]

Pang, Y. K.

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Puers, R.

S. Reyntjens and R. Puers, “Focused ion beam induced deposition: fabrication of three-dimensional microstructures and young’s modulus of the deposited material,” J. Micromech. Microeng. 10, 181 (2000).
[Crossref]

Reyntjens, S.

S. Reyntjens and R. Puers, “Focused ion beam induced deposition: fabrication of three-dimensional microstructures and young’s modulus of the deposited material,” J. Micromech. Microeng. 10, 181 (2000).
[Crossref]

Rill, M. S.

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Robbie, K.

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[Crossref]

Saba, M.

M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schröder-Turk, “Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure,” Mater. Today Proc. 1, 193–208 (2014).
[Crossref]

M. Saba, M. D. Turner, K. Mecke, M. Gu, and G. E. Schröder-Turk, “Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets,” Phys. Rev. B 88, 245116 (2013).
[Crossref]

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroeder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Sanvitto, D.

M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Schröder-Turk, G. E.

M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schröder-Turk, “Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure,” Mater. Today Proc. 1, 193–208 (2014).
[Crossref]

M. Saba, M. D. Turner, K. Mecke, M. Gu, and G. E. Schröder-Turk, “Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets,” Phys. Rev. B 88, 245116 (2013).
[Crossref]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

Schroeder-Turk, G. E.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroeder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Sheng, P.

Sit, J. C.

A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
[Crossref]

Tajiri, T.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105, 051107 (2014).
[Crossref]

Takahashi, S.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105, 051107 (2014).
[Crossref]

Tam, W. Y.

Tasco, V.

M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Tatebayashi, J.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105, 051107 (2014).
[Crossref]

Thiel, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Toader, O.

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional pho-tonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Turner, M. D.

M. Saba, M. D. Turner, K. Mecke, M. Gu, and G. E. Schröder-Turk, “Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets,” Phys. Rev. B 88, 245116 (2013).
[Crossref]

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroeder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

van Popta, A. C.

A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
[Crossref]

von Freymann, G.

M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Wang, X.

Wegener, M.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
[Crossref]

M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

Wilts, B. D.

M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schröder-Turk, “Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure,” Mater. Today Proc. 1, 193–208 (2014).
[Crossref]

Ye, Y.

Y. Ye and S. He, “90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010).
[Crossref]

Zhang, Q.

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroeder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Zhang, Z.-Q.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quant. Electron. 27, 369–416 (2003).
[Crossref]

Adv. Mater. (2)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. 19, 207–210 (2007).
[Crossref]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105, 051107 (2014).
[Crossref]

Y. Ye and S. He, “90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010).
[Crossref]

J. Appl. Phys. (1)

A. C. van Popta, M. J. Brett, and J. C. Sit, “Double-handed circular Bragg phenomena in polygonal helix thin films,” J. Appl. Phys. 98, 083517 (2005).
[Crossref]

J. Micromech. Microeng. (1)

S. Reyntjens and R. Puers, “Focused ion beam induced deposition: fabrication of three-dimensional microstructures and young’s modulus of the deposited material,” J. Micromech. Microeng. 10, 181 (2000).
[Crossref]

J. Vac. Sci. Technol. A (1)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[Crossref]

Laser Photon. Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
[Crossref]

Mater. Today Proc. (1)

M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schröder-Turk, “Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure,” Mater. Today Proc. 1, 193–208 (2014).
[Crossref]

Nat. Commun. (1)

M. Esposito, V. Tasco, F. Todisco, M. Cuscuna, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schroeder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics 7, 801–805 (2013).
[Crossref]

Opt. Commun. (1)

A. Lakhtakia and M. McCall, “Sculptured thin films as ultranarrow-bandpass circular-polarization filters,” Opt. Commun. 168, 457–465 (1999).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Saba, M. D. Turner, K. Mecke, M. Gu, and G. E. Schröder-Turk, “Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets,” Phys. Rev. B 88, 245116 (2013).
[Crossref]

Phys. Rev. Lett. (1)

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106, 103902 (2011).
[Crossref] [PubMed]

Prog. Quant. Electron. (1)

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quant. Electron. 27, 369–416 (2003).
[Crossref]

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional pho-tonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

Other (1)

Lumerical FDTD solutions, http://www.lumerical.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 An illustration depicts circular dichroism induced by the chiral structure, where right-handed (RH) and left-handed (LH) circularly polarized light, denoted in red and blue, exhibit different transmission when passing through the media.
Fig. 2
Fig. 2 (a) is an illustration of the dielectric RH helix array with geometrical parameters defined by helix radius R, wire radius r, pitch length p, and lattice constant a. (b) is the top view of the helix array, and (c) shows the points within the Brillouin zone.
Fig. 3
Fig. 3 (a) Band structure of the helix array along ΓZ direction. The CD index of the mode is represented by different colors and coupling index is denoted by the size of the symbol. (b) and (c) are the reflectance spectra for RH and LH light, respectively.
Fig. 4
Fig. 4 The electric field distributions of the RH gap at the (a) low frequency edge, and (b) high frequency edge along the axis of the helix. The direction of the electric field is denoted by the arrows. (c) An illustration shows that LH motifs denoted in blue can be constructed by segments of adjacent RH helices. The inset shows the locations of the LH motifs in a RH helix array. Effective LH structures are denoted in blue. (d) The electric field distributions of the LH gap at the low frequency edge, and (e) high frequency edge along the axis of the helix.
Fig. 5
Fig. 5 Shifts of the low frequency edge (Ω l ) and high frequency edge (Ω h ) of the RH and LH polarization band gaps while varying the helix radius.
Fig. 6
Fig. 6 Shifts of the low frequency edge (Ω l ) and high frequency edge (Ω h ) of the RH and LH polarization band gaps while varying the wire radius.
Fig. 7
Fig. 7 (a) RH helices are arranged with a phase of 180 . The induced LH structures are denoted in blue. The inset shows the top view. (b) The reflectance spectrum that shows a large overlap of RH gap and LH gap, resulting in a wide band gap as denoted by the gray region.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η R H ( L H ) | [ 1 2 ( a ^ x i a ^ y ) ] H ( x , y , z 0 ) d x d y | 2 | 1 2 ( a ^ x i a ^ y ) | 2 d x d y | H ( x , y , z 0 ) | 2 d x d y ,
C = sgn ( q k ω ) η R H η L H η R H + η L H ,

Metrics