Abstract

We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of modulational instability in discrete media with self-defocusing nonlinearity

Milutin Stepic, Christian Wirth, Christian E. Rüter, and Detlef Kip
Opt. Lett. 31(2) 247-249 (2006)

Soliton transverse instabilities in anisotropic nonlocal self-focusing media

Kristian Motzek, Friedemann Kaiser, Wen-Hen Chu, Ming-Feng Shih, and Yuri S. Kivshar
Opt. Lett. 29(3) 280-282 (2004)

Anisotropic nonlinear refractive index measurement of a photorefractive crystal via spatial self-phase modulation

Omar Boughdad, Aurélien Eloy, Fabrice Mortessagne, Matthieu Bellec, and Claire Michel
Opt. Express 27(21) 30360-30370 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
    [Crossref] [PubMed]
  3. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003).
    [Crossref] [PubMed]
  4. M. Saffman and A. A. Zozulya, “Circular solitons do not exist in photorefractive media,” Opt. Lett. 23(20), 1579–1581 (1998).
    [Crossref] [PubMed]
  5. M. F. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21(5), 324–326 (1996).
    [Crossref] [PubMed]
  6. H. Meng, G. Salamo, and M. Segev, “Primarily isotropic nature of photorefractive screening solitons and the interactions between them,” Opt. Lett. 23(12), 897–899 (1998).
    [Crossref] [PubMed]
  7. E. DelRe, A. Ciattoni, and A. J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett. 26(12), 908–910 (2001).
    [Crossref] [PubMed]
  8. E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85(23), 5499–5501 (2004).
    [Crossref]
  9. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals 1. Steady-State,” Ferroelectrics 22(1), 949–960 (1978).
    [Crossref]
  10. D. N. Christodoulides and M. I. Carvalho, “Compression, self-bending, and collapse of Gaussian beams in photorefractive crystals,” Opt. Lett. 19(21), 1714–1716 (1994).
    [Crossref] [PubMed]
  11. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
    [Crossref] [PubMed]
  12. D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12(9), 1628–1633 (1995).
    [Crossref]
  13. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
    [Crossref] [PubMed]
  14. M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
    [Crossref] [PubMed]
  15. W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
    [Crossref]
  16. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99(4), 043903 (2007).
    [Crossref] [PubMed]
  17. A. Ciattoni and C. Palma, “Anisotropic beam spreading in uniaxial crystals,” Opt. Commun. 231(1–6), 79–92 (2004).
    [Crossref]
  18. E. DelRe, A. Ciattoni, and E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 017601 (2006).
    [Crossref] [PubMed]
  19. C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
    [Crossref]
  20. V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate cyrstals,” Sov. J. Quantum Electron. 10(11), 1346–1349 (1980).
    [Crossref]
  21. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72(1), 46–51 (1982).
    [Crossref]
  22. N. V. Kukhtarev, E. Kratzig, H. C. Kulich, R. A. Rupp, and J. Albers, “Anisotropic selfdiffraction in BaTiO3,” Appl. Phys. B 35(1), 17–21 (1984).
    [Crossref]
  23. M. D. Ewbank, P. Yeh, and J. Feinberg, “Photorefractive conical diffraction in BaTiO3,” Opt. Commun. 59(5-6), 423–428 (1986).
    [Crossref]
  24. D. A. Temple and C. Warde, “High-order anisotropic diffraction in photorefractive crystals,” J. Opt. Soc. Am. B 5(8), 1800–1805 (1988).
    [Crossref]
  25. K. Nakagawa and T. Minemoto, “Conical diffraction induced by 2 extraordinary waves,” J. Opt. Soc. Am. B 11(9), 1639–1643 (1994).
    [Crossref]
  26. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  27. A. R. Pandey, J. W. Haus, P. E. Powers, and P. P. Yaney, “Optical field measurements for accurate modeling of nonlinear parametric interactions,” J. Opt. Soc. Am. B 26(2), 218–227 (2009).
    [Crossref]
  28. M. Tsang, D. Psaltis, and F. G. Omenetto, “Reverse propagation of femtosecond pulses in optical fibers,” Opt. Lett. 28(20), 1873–1875 (2003).
    [Crossref] [PubMed]
  29. C. Barsi and J. W. Fleischer, “Nonlinear Abbe theory,” Nat. Photonics 7(8), 639–643 (2013).
    [Crossref]
  30. C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, and J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt. 52(10), D92–D96 (2013).
    [PubMed]
  31. C. Barsi and J. W. Fleischer, “Digital reconstruction of optically-induced potentials,” Opt. Express 17(25), 23338–23343 (2009).
    [Crossref] [PubMed]
  32. B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefrative crystals,” J. Opt. Soc. Am. B 14(11), 3078–3090 (1997).
    [Crossref]
  33. A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20(11), 2163–2171 (2003).
    [Crossref] [PubMed]
  34. J. Safioui, M. Chauvet, E. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive LiNbO3,” J. Opt. Soc. Am. B 26(3), 487–492 (2009).
    [Crossref]
  35. Q. W. Song, C. P. Zhang, and P. J. Talbot, “Self-defocusing, self-focusing, and speckle in LiNbO3 and LiNbO3:Fe crystals,” Appl. Opt. 32(35), 7266–7271 (1993).
    [Crossref] [PubMed]
  36. S. Jia, M. P. Haataja, and J. W. Fleischer, “Rayleigh-Taylor instability in nonlinear Schrodinger flow,” New J. Phys. 14(7), 075009 (2012).
    [Crossref]
  37. C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys. 8(6), 471–475 (2012).
    [Crossref]
  38. I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
    [Crossref]

2013 (3)

C. Barsi and J. W. Fleischer, “Nonlinear Abbe theory,” Nat. Photonics 7(8), 639–643 (2013).
[Crossref]

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
[Crossref]

C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, and J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt. 52(10), D92–D96 (2013).
[PubMed]

2012 (2)

S. Jia, M. P. Haataja, and J. W. Fleischer, “Rayleigh-Taylor instability in nonlinear Schrodinger flow,” New J. Phys. 14(7), 075009 (2012).
[Crossref]

C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys. 8(6), 471–475 (2012).
[Crossref]

2009 (4)

2007 (2)

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99(4), 043903 (2007).
[Crossref] [PubMed]

2006 (1)

E. DelRe, A. Ciattoni, and E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 017601 (2006).
[Crossref] [PubMed]

2004 (2)

A. Ciattoni and C. Palma, “Anisotropic beam spreading in uniaxial crystals,” Opt. Commun. 231(1–6), 79–92 (2004).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85(23), 5499–5501 (2004).
[Crossref]

2003 (3)

2002 (2)

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
[Crossref] [PubMed]

2001 (1)

1998 (2)

1997 (2)

1996 (1)

1995 (2)

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12(9), 1628–1633 (1995).
[Crossref]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
[Crossref] [PubMed]

1994 (3)

1993 (1)

1988 (1)

1986 (1)

M. D. Ewbank, P. Yeh, and J. Feinberg, “Photorefractive conical diffraction in BaTiO3,” Opt. Commun. 59(5-6), 423–428 (1986).
[Crossref]

1984 (1)

N. V. Kukhtarev, E. Kratzig, H. C. Kulich, R. A. Rupp, and J. Albers, “Anisotropic selfdiffraction in BaTiO3,” Appl. Phys. B 35(1), 17–21 (1984).
[Crossref]

1982 (1)

1980 (1)

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate cyrstals,” Sov. J. Quantum Electron. 10(11), 1346–1349 (1980).
[Crossref]

1978 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals 1. Steady-State,” Ferroelectrics 22(1), 949–960 (1978).
[Crossref]

Agranat, A. J.

Agulló-López, F.

M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
[Crossref] [PubMed]

Albers, J.

N. V. Kukhtarev, E. Kratzig, H. C. Kulich, R. A. Rupp, and J. Albers, “Anisotropic selfdiffraction in BaTiO3,” Appl. Phys. B 35(1), 17–21 (1984).
[Crossref]

Alonzo, M.

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
[Crossref] [PubMed]

Barsi, C.

C. Barsi and J. W. Fleischer, “Nonlinear Abbe theory,” Nat. Photonics 7(8), 639–643 (2013).
[Crossref]

C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, and J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt. 52(10), D92–D96 (2013).
[PubMed]

C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys. 8(6), 471–475 (2012).
[Crossref]

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
[Crossref]

C. Barsi and J. W. Fleischer, “Digital reconstruction of optically-induced potentials,” Opt. Express 17(25), 23338–23343 (2009).
[Crossref] [PubMed]

Belic, M. R.

M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
[Crossref] [PubMed]

Calvo, G. F.

M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
[Crossref] [PubMed]

Carmon, T.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003).
[Crossref] [PubMed]

Carrascosa, M.

M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
[Crossref] [PubMed]

Carusotto, I.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
[Crossref]

Carvalho, M. I.

Chauvet, M.

Christodoulides, D. N.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12(9), 1628–1633 (1995).
[Crossref]

D. N. Christodoulides and M. I. Carvalho, “Compression, self-bending, and collapse of Gaussian beams in photorefractive crystals,” Opt. Lett. 19(21), 1714–1716 (1994).
[Crossref] [PubMed]

Ciattoni, A.

E. DelRe, A. Ciattoni, and E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 017601 (2006).
[Crossref] [PubMed]

A. Ciattoni and C. Palma, “Anisotropic beam spreading in uniaxial crystals,” Opt. Commun. 231(1–6), 79–92 (2004).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85(23), 5499–5501 (2004).
[Crossref]

A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20(11), 2163–2171 (2003).
[Crossref] [PubMed]

E. DelRe, A. Ciattoni, and A. J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett. 26(12), 908–910 (2001).
[Crossref] [PubMed]

Ciuti, C.

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
[Crossref]

Coda, V.

Conti, C.

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99(4), 043903 (2007).
[Crossref] [PubMed]

Crosignani, B.

B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefrative crystals,” J. Opt. Soc. Am. B 14(11), 3078–3090 (1997).
[Crossref]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref] [PubMed]

De Masi, G.

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85(23), 5499–5501 (2004).
[Crossref]

Degasperis, A.

DelRe, E.

E. DelRe, A. Ciattoni, and E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 017601 (2006).
[Crossref] [PubMed]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85(23), 5499–5501 (2004).
[Crossref]

E. DelRe, A. Ciattoni, and A. J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett. 26(12), 908–910 (2001).
[Crossref] [PubMed]

Devaux, E.

Di Porto, P.

DiPorto, P.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref] [PubMed]

Dorosh, I. R.

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate cyrstals,” Sov. J. Quantum Electron. 10(11), 1346–1349 (1980).
[Crossref]

Efremidis, N. K.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

Ewbank, M. D.

M. D. Ewbank, P. Yeh, and J. Feinberg, “Photorefractive conical diffraction in BaTiO3,” Opt. Commun. 59(5-6), 423–428 (1986).
[Crossref]

Fazio, E.

Feinberg, J.

M. D. Ewbank, P. Yeh, and J. Feinberg, “Photorefractive conical diffraction in BaTiO3,” Opt. Commun. 59(5-6), 423–428 (1986).
[Crossref]

J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72(1), 46–51 (1982).
[Crossref]

Fleischer, J. W.

C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, and J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt. 52(10), D92–D96 (2013).
[PubMed]

C. Barsi and J. W. Fleischer, “Nonlinear Abbe theory,” Nat. Photonics 7(8), 639–643 (2013).
[Crossref]

S. Jia, M. P. Haataja, and J. W. Fleischer, “Rayleigh-Taylor instability in nonlinear Schrodinger flow,” New J. Phys. 14(7), 075009 (2012).
[Crossref]

C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys. 8(6), 471–475 (2012).
[Crossref]

C. Barsi and J. W. Fleischer, “Digital reconstruction of optically-induced potentials,” Opt. Express 17(25), 23338–23343 (2009).
[Crossref] [PubMed]

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
[Crossref]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

Garrett, M. H.

Ghofraniha, N.

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99(4), 043903 (2007).
[Crossref] [PubMed]

Haataja, M. P.

S. Jia, M. P. Haataja, and J. W. Fleischer, “Rayleigh-Taylor instability in nonlinear Schrodinger flow,” New J. Phys. 14(7), 075009 (2012).
[Crossref]

Haus, J. W.

Jia, S.

C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys. 8(6), 471–475 (2012).
[Crossref]

S. Jia, M. P. Haataja, and J. W. Fleischer, “Rayleigh-Taylor instability in nonlinear Schrodinger flow,” New J. Phys. 14(7), 075009 (2012).
[Crossref]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

Kaiser, F.

M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
[Crossref] [PubMed]

Kratzig, E.

N. V. Kukhtarev, E. Kratzig, H. C. Kulich, R. A. Rupp, and J. Albers, “Anisotropic selfdiffraction in BaTiO3,” Appl. Phys. B 35(1), 17–21 (1984).
[Crossref]

Kukhtarev, N. V.

N. V. Kukhtarev, E. Kratzig, H. C. Kulich, R. A. Rupp, and J. Albers, “Anisotropic selfdiffraction in BaTiO3,” Appl. Phys. B 35(1), 17–21 (1984).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals 1. Steady-State,” Ferroelectrics 22(1), 949–960 (1978).
[Crossref]

Kulich, H. C.

N. V. Kukhtarev, E. Kratzig, H. C. Kulich, R. A. Rupp, and J. Albers, “Anisotropic selfdiffraction in BaTiO3,” Appl. Phys. B 35(1), 17–21 (1984).
[Crossref]

Kutz, J. N.

Kuzminov, Y. S.

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate cyrstals,” Sov. J. Quantum Electron. 10(11), 1346–1349 (1980).
[Crossref]

Leach, P.

Lu, C.-H.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals 1. Steady-State,” Ferroelectrics 22(1), 949–960 (1978).
[Crossref]

Meng, H.

Minemoto, T.

Nakagawa, K.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals 1. Steady-State,” Ferroelectrics 22(1), 949–960 (1978).
[Crossref]

Omenetto, F. G.

Palange, E.

E. DelRe, A. Ciattoni, and E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 017601 (2006).
[Crossref] [PubMed]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85(23), 5499–5501 (2004).
[Crossref]

Palma, C.

Pandey, A. R.

Pettazzi, F.

Picozzi, A.

C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys. 8(6), 471–475 (2012).
[Crossref]

Powers, P. E.

Psaltis, D.

Rica, S.

C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys. 8(6), 471–475 (2012).
[Crossref]

Ruocco, G.

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99(4), 043903 (2007).
[Crossref] [PubMed]

Rupp, R. A.

N. V. Kukhtarev, E. Kratzig, H. C. Kulich, R. A. Rupp, and J. Albers, “Anisotropic selfdiffraction in BaTiO3,” Appl. Phys. B 35(1), 17–21 (1984).
[Crossref]

Saffman, M.

Safioui, J.

Salamo, G.

Sears, S.

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

Segev, M.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

H. Meng, G. Salamo, and M. Segev, “Primarily isotropic nature of photorefractive screening solitons and the interactions between them,” Opt. Lett. 23(12), 897–899 (1998).
[Crossref] [PubMed]

B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefrative crystals,” J. Opt. Soc. Am. B 14(11), 3078–3090 (1997).
[Crossref]

M. F. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21(5), 324–326 (1996).
[Crossref] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref] [PubMed]

Shih, M. F.

Song, Q. W.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals 1. Steady-State,” Ferroelectrics 22(1), 949–960 (1978).
[Crossref]

Stepken, A.

M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
[Crossref] [PubMed]

Sun, C.

C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys. 8(6), 471–475 (2012).
[Crossref]

Talbot, P. J.

Temple, D. A.

Tkachenko, N. V.

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate cyrstals,” Sov. J. Quantum Electron. 10(11), 1346–1349 (1980).
[Crossref]

Trillo, S.

Tsang, M.

Valley, G. C.

M. F. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21(5), 324–326 (1996).
[Crossref] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref] [PubMed]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals 1. Steady-State,” Ferroelectrics 22(1), 949–960 (1978).
[Crossref]

Voronov, V. V.

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate cyrstals,” Sov. J. Quantum Electron. 10(11), 1346–1349 (1980).
[Crossref]

Vujic, D.

M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
[Crossref] [PubMed]

Wan, W.

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
[Crossref]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

Warde, C.

Williams, M. O.

Yamaguchi, I.

Yaney, P. P.

Yariv, A.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref] [PubMed]

Yeh, P.

M. D. Ewbank, P. Yeh, and J. Feinberg, “Photorefractive conical diffraction in BaTiO3,” Opt. Commun. 59(5-6), 423–428 (1986).
[Crossref]

Zhang, C. P.

Zhang, T.

Zozulya, A. A.

M. Saffman and A. A. Zozulya, “Circular solitons do not exist in photorefractive media,” Opt. Lett. 23(20), 1579–1581 (1998).
[Crossref] [PubMed]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

N. V. Kukhtarev, E. Kratzig, H. C. Kulich, R. A. Rupp, and J. Albers, “Anisotropic selfdiffraction in BaTiO3,” Appl. Phys. B 35(1), 17–21 (1984).
[Crossref]

Appl. Phys. Lett. (1)

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85(23), 5499–5501 (2004).
[Crossref]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals 1. Steady-State,” Ferroelectrics 22(1), 949–960 (1978).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (6)

Nat. Photonics (2)

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
[Crossref]

C. Barsi and J. W. Fleischer, “Nonlinear Abbe theory,” Nat. Photonics 7(8), 639–643 (2013).
[Crossref]

Nat. Phys. (2)

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3(1), 46–51 (2007).
[Crossref]

C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nat. Phys. 8(6), 471–475 (2012).
[Crossref]

New J. Phys. (1)

S. Jia, M. P. Haataja, and J. W. Fleischer, “Rayleigh-Taylor instability in nonlinear Schrodinger flow,” New J. Phys. 14(7), 075009 (2012).
[Crossref]

Opt. Commun. (2)

A. Ciattoni and C. Palma, “Anisotropic beam spreading in uniaxial crystals,” Opt. Commun. 231(1–6), 79–92 (2004).
[Crossref]

M. D. Ewbank, P. Yeh, and J. Feinberg, “Photorefractive conical diffraction in BaTiO3,” Opt. Commun. 59(5-6), 423–428 (1986).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. A (1)

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51(2), 1520–1531 (1995).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

M. R. Belić, D. Vujić, A. Stepken, F. Kaiser, G. F. Calvo, F. Agulló-López, and M. Carrascosa, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066610 (2002).
[Crossref] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[Crossref] [PubMed]

E. DelRe, A. Ciattoni, and E. Palange, “Role of charge saturation in photorefractive dynamics of micron-sized beams and departure from soliton behavior,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 017601 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99(4), 043903 (2007).
[Crossref] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90(2), 023902 (2003).
[Crossref] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73(24), 3211–3214 (1994).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85(1), 299–366 (2013).
[Crossref]

Sov. J. Quantum Electron. (1)

V. V. Voronov, I. R. Dorosh, Y. S. Kuzminov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate cyrstals,” Sov. J. Quantum Electron. 10(11), 1346–1349 (1980).
[Crossref]

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A coherent 532 nm beam is focused with a plano-convex lens onto the input face of a photorefractive crystal, with the polarization and crystalline c-axis parallel. The output is imaged onto a CCD camera.
Fig. 2
Fig. 2 Experimental measurements of linear and nonlinear Gaussian beam propagation. Top row: intensity. Bottom row: phase. a), d): experimental input. b), e): linear (diffracted) output. c), f): a dispersive optical shock wave is formed due to the photorefractive nonlinearity. The c-axis is horizontal in all figures. Scale bar: 50 μm.
Fig. 3
Fig. 3 Reconstruction of input intensity (top row) and phase (bottom row) from measured output for different nonlinear models. The number corresponds to the model listed in Table 1. 1): pure Kerr nonlinearity. 2): new model using Kerr nonlinearity and anisotropic diffraction produces the best reconstructed input. 3): saturable nonlinearity. 4), 7): diffusion models. Scale bar: 50 μm.
Fig. 4
Fig. 4 Experimentally determined anisotropic correction (δ) as a function of applied electric field across the c-axis.
Fig. 5
Fig. 5 Experimental results for an image of a 1951 Air Force resolution chart. Top row: intensity. Bottom row: phase. a), e): measured input field. b), f): linear (diffracted) output. c), g): nonlinear output. Note the severe distortion, especially in the intensity, as compared with the linear output. d), h) Reconstructed input using the new anisotropic model accurately recovers both intensity and phase. Scale bar: 200 μm.

Tables (1)

Tables Icon

Table 1 Various (1 + 1)-D models of nonlinear photorefraction and their effect on numerical reconstruction.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D 2 ( θ , z ) = z 2 2 k 0 2 σ 2 [ ( n e n o 2 ) 2 cos 2 θ + ( 1 n o ) 2 sin 2 θ ] + σ 2 2
E S C = E a p p I + I D k B T e I I + I D ,
Δ n = ( 1 / 2 ) k 0 n 0 3 r 33 E S C ,
i ψ z = 1 2 k 2 ψ k Δ n n e ψ ,
S S E = ( m x m y ) 1 m x , m y ( I m x , m y i n , r e c o n s t r u c t e d I m x , m y i n , m e a s u r e d ) ,
e i λ Δ z 4 π ( k x 2 n e + k y 2 n e ) e i λ Δ z 4 π ( k x 2 n e ( 1 + δ ) + k y 2 n e ) ,

Metrics