Abstract

Effects of ZnO seed layer annealing temperature on the characteristics of the n–ZnO nanowires/Al2O3/p-Si heterojunction are investigated. Well-aligned ZnO nanowires (NWs) are grown through a simple hydrothermal method. Both the insertion of Al2O3 buffer layer and the annealing treatment of ZnO seed layer are advantageous for the growth of ZnO NWs. This leads to a relatively high rectification ratio of up to 7.8 × 103 at ± 4.0 V in ZnO NWs/Al2O3/p-Si heterojunction photodetectors. The photoelectrical property of n-ZnO/p-Si photodetectors with an enhanced UV/dark current ratio as high as 30 under a reverse bias of 4.0 V is obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved photoelectrical properties of n-ZnO/p-Si heterojunction by inserting an optimized thin Al2O3 buffer layer

Hong-Liang Lu, Yu-Zhu Gu, Yuan Zhang, Xin-Yan Liu, Peng-Fei Wang, Qing-Qing Sun, Shi-Jin Ding, and David Wei Zhang
Opt. Express 22(18) 22184-22189 (2014)

n-ZnO/LaAlO3/p-Si heterojunction for visible-blind UV detection

D. S. Tasi, C. F. Kang, H. H. Wang, C. A. Lin, J. J. Ke, Y. H. Chu, and J. H. He
Opt. Lett. 37(6) 1112-1114 (2012)

Electroluminescence from n-In2O3:Sn randomly assembled nanorods/p-SiC heterojunction

H. Y. Yang, S. F. Yu, H. K. Liang, T. P. Chen, J. Gao, and T. Wu
Opt. Express 18(15) 15585-15590 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
    [Crossref]
  2. H. W. Kang, J. Leem, S. Y. Yoon, and H. J. Sung, “Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application,” Nanoscale 6(5), 2840–2846 (2014).
    [Crossref] [PubMed]
  3. D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
    [Crossref] [PubMed]
  4. D. Somvanshi and S. Jit, “Analysis of temperature-dependent electrical characteristics of n-ZnO nanowires (NWs)/p-Si heterojunction diodes,” IEEE Theory Nanotechnol. 13(1), 62–69 (2014).
    [Crossref]
  5. S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
    [Crossref] [PubMed]
  6. H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. Eng. A 393(1-2), 80–82 (2005).
    [Crossref]
  7. L. L. Yang, Q. X. Zhao, M. Willander, and J. H. Yang, “Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition,” J. Cryst. Growth 311(4), 1046–1050 (2009).
    [Crossref]
  8. H. J. Jung, S. Lee, Y. Yu, S. M. Hong, H. C. Choi, and M. Y. Choi, “Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions,” Thin Solid Films 524, 144–150 (2012).
    [Crossref]
  9. H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vacuum 86(1), 101–105 (2011).
    [Crossref]
  10. S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method,” Appl. Phys., A Mater. Sci. Process. 94(4), 775–780 (2009).
    [Crossref]
  11. J. D. Hwang and Y. H. Chen, “Effects of pre-annealing conditions on the characteristics of ZnO nanorods and ZnO/p-Si heterojunction diodes grown through hydrothermal method,” Thin Solid Films 520(16), 5294–5299 (2012).
    [Crossref]
  12. J. D. Hwang, D. H. Wu, and S. B. Hwang, “Inserting an i-ZnO layer to increase the performance of p-Si/n-ZnO heterojunction photodetectors,” Mater. Sci. Semicond. Process. 39, 132–135 (2015).
    [Crossref]
  13. H. L. Lu, Y. Z. Gu, Y. Zhang, X. Y. Liu, P. F. Wang, Q. Q. Sun, S. J. Ding, and D. W. Zhang, “Improved photoelectrical properties of n-ZnO/p-Si heterojunction by inserting an optimized thin Al₂O₃ buffer layer,” Opt. Express 22(18), 22184–22189 (2014).
    [Crossref] [PubMed]
  14. A. M. Lord, A. S. Walton, T. G. Maffeis, M. B. Ward, P. Davies, and S. P. Wilks, “ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method,” Nanotechnology 25(42), 425706 (2014).
    [Crossref] [PubMed]
  15. H. S. Chin and L. S. Chao, “The effect of thermal annealing processes on structural and photoluminescence of zinc oxide thin film,” J. Nanomater. 2013, 424953 (2013).
    [Crossref]
  16. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).
  17. D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC, 2001).
  18. T. Wang, H. Wu, C. Chen, and C. Liu, “Growth, optical, and electrical properties of nonpolar m-plane ZnO on p-Si substrates with Al2O3 buffer layers,” Appl. Phys. Lett. 100(1), 011901 (2012).
    [Crossref]
  19. X. W. Gan, T. Wang, H. Wu, and C. Liu, “ZnO deposited on Si (111) with Al2O3 buffer layer by atomic layer deposition,” Vacuum 107, 120–123 (2014).
    [Crossref]
  20. C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
    [Crossref]
  21. Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
    [Crossref]
  22. K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, “Effects of thermal annealing of ZnO layers grown by MBE,” J. Cryst. Growth 214, 312–315 (2000).
    [Crossref]
  23. R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
    [Crossref]
  24. P. N. Ni, C. X. Shan, S. P. Wang, X.-Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(29), 4445–4449 (2013).
    [Crossref]

2015 (2)

J. D. Hwang, D. H. Wu, and S. B. Hwang, “Inserting an i-ZnO layer to increase the performance of p-Si/n-ZnO heterojunction photodetectors,” Mater. Sci. Semicond. Process. 39, 132–135 (2015).
[Crossref]

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

2014 (6)

H. L. Lu, Y. Z. Gu, Y. Zhang, X. Y. Liu, P. F. Wang, Q. Q. Sun, S. J. Ding, and D. W. Zhang, “Improved photoelectrical properties of n-ZnO/p-Si heterojunction by inserting an optimized thin Al₂O₃ buffer layer,” Opt. Express 22(18), 22184–22189 (2014).
[Crossref] [PubMed]

A. M. Lord, A. S. Walton, T. G. Maffeis, M. B. Ward, P. Davies, and S. P. Wilks, “ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method,” Nanotechnology 25(42), 425706 (2014).
[Crossref] [PubMed]

X. W. Gan, T. Wang, H. Wu, and C. Liu, “ZnO deposited on Si (111) with Al2O3 buffer layer by atomic layer deposition,” Vacuum 107, 120–123 (2014).
[Crossref]

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

H. W. Kang, J. Leem, S. Y. Yoon, and H. J. Sung, “Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application,” Nanoscale 6(5), 2840–2846 (2014).
[Crossref] [PubMed]

D. Somvanshi and S. Jit, “Analysis of temperature-dependent electrical characteristics of n-ZnO nanowires (NWs)/p-Si heterojunction diodes,” IEEE Theory Nanotechnol. 13(1), 62–69 (2014).
[Crossref]

2013 (3)

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

H. S. Chin and L. S. Chao, “The effect of thermal annealing processes on structural and photoluminescence of zinc oxide thin film,” J. Nanomater. 2013, 424953 (2013).
[Crossref]

P. N. Ni, C. X. Shan, S. P. Wang, X.-Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(29), 4445–4449 (2013).
[Crossref]

2012 (4)

J. D. Hwang and Y. H. Chen, “Effects of pre-annealing conditions on the characteristics of ZnO nanorods and ZnO/p-Si heterojunction diodes grown through hydrothermal method,” Thin Solid Films 520(16), 5294–5299 (2012).
[Crossref]

T. Wang, H. Wu, C. Chen, and C. Liu, “Growth, optical, and electrical properties of nonpolar m-plane ZnO on p-Si substrates with Al2O3 buffer layers,” Appl. Phys. Lett. 100(1), 011901 (2012).
[Crossref]

S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
[Crossref] [PubMed]

H. J. Jung, S. Lee, Y. Yu, S. M. Hong, H. C. Choi, and M. Y. Choi, “Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions,” Thin Solid Films 524, 144–150 (2012).
[Crossref]

2011 (1)

H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vacuum 86(1), 101–105 (2011).
[Crossref]

2010 (1)

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

2009 (2)

S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method,” Appl. Phys., A Mater. Sci. Process. 94(4), 775–780 (2009).
[Crossref]

L. L. Yang, Q. X. Zhao, M. Willander, and J. H. Yang, “Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition,” J. Cryst. Growth 311(4), 1046–1050 (2009).
[Crossref]

2007 (1)

R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
[Crossref]

2005 (1)

H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. Eng. A 393(1-2), 80–82 (2005).
[Crossref]

2000 (1)

K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, “Effects of thermal annealing of ZnO layers grown by MBE,” J. Cryst. Growth 214, 312–315 (2000).
[Crossref]

Ashfold, M. N. R.

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Bang, S.

S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
[Crossref] [PubMed]

Basak, D.

R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
[Crossref]

Cai, L.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Cao, W.

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Chang, J. H.

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

Chao, L. S.

H. S. Chin and L. S. Chao, “The effect of thermal annealing processes on structural and photoluminescence of zinc oxide thin film,” J. Nanomater. 2013, 424953 (2013).
[Crossref]

Chen, C.

T. Wang, H. Wu, C. Chen, and C. Liu, “Growth, optical, and electrical properties of nonpolar m-plane ZnO on p-Si substrates with Al2O3 buffer layers,” Appl. Phys. Lett. 100(1), 011901 (2012).
[Crossref]

Chen, T.

S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method,” Appl. Phys., A Mater. Sci. Process. 94(4), 775–780 (2009).
[Crossref]

Chen, Y. H.

J. D. Hwang and Y. H. Chen, “Effects of pre-annealing conditions on the characteristics of ZnO nanorods and ZnO/p-Si heterojunction diodes grown through hydrothermal method,” Thin Solid Films 520(16), 5294–5299 (2012).
[Crossref]

Chin, H. S.

H. S. Chin and L. S. Chao, “The effect of thermal annealing processes on structural and photoluminescence of zinc oxide thin film,” J. Nanomater. 2013, 424953 (2013).
[Crossref]

Choi, H. C.

H. J. Jung, S. Lee, Y. Yu, S. M. Hong, H. C. Choi, and M. Y. Choi, “Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions,” Thin Solid Films 524, 144–150 (2012).
[Crossref]

Choi, M. Y.

H. J. Jung, S. Lee, Y. Yu, S. M. Hong, H. C. Choi, and M. Y. Choi, “Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions,” Thin Solid Films 524, 144–150 (2012).
[Crossref]

Davies, P.

A. M. Lord, A. S. Walton, T. G. Maffeis, M. B. Ward, P. Davies, and S. P. Wilks, “ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method,” Nanotechnology 25(42), 425706 (2014).
[Crossref] [PubMed]

Debnath, R.

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

Ding, S. J.

Dong, H.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Fujita, S.

K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, “Effects of thermal annealing of ZnO layers grown by MBE,” J. Cryst. Growth 214, 312–315 (2000).
[Crossref]

K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, “Effects of thermal annealing of ZnO layers grown by MBE,” J. Cryst. Growth 214, 312–315 (2000).
[Crossref]

Gan, X. W.

X. W. Gan, T. Wang, H. Wu, and C. Liu, “ZnO deposited on Si (111) with Al2O3 buffer layer by atomic layer deposition,” Vacuum 107, 120–123 (2014).
[Crossref]

Ghayour, H.

H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vacuum 86(1), 101–105 (2011).
[Crossref]

Ghosh, R.

R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
[Crossref]

Gu, Y. Z.

Ha, J. Y.

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

Heo, J. H.

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

Hong, S. M.

H. J. Jung, S. Lee, Y. Yu, S. M. Hong, H. C. Choi, and M. Y. Choi, “Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions,” Thin Solid Films 524, 144–150 (2012).
[Crossref]

Hu, C.

H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. Eng. A 393(1-2), 80–82 (2005).
[Crossref]

Hwang, J. D.

J. D. Hwang, D. H. Wu, and S. B. Hwang, “Inserting an i-ZnO layer to increase the performance of p-Si/n-ZnO heterojunction photodetectors,” Mater. Sci. Semicond. Process. 39, 132–135 (2015).
[Crossref]

J. D. Hwang and Y. H. Chen, “Effects of pre-annealing conditions on the characteristics of ZnO nanorods and ZnO/p-Si heterojunction diodes grown through hydrothermal method,” Thin Solid Films 520(16), 5294–5299 (2012).
[Crossref]

Hwang, S. B.

J. D. Hwang, D. H. Wu, and S. B. Hwang, “Inserting an i-ZnO layer to increase the performance of p-Si/n-ZnO heterojunction photodetectors,” Mater. Sci. Semicond. Process. 39, 132–135 (2015).
[Crossref]

Jeon, H.

S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
[Crossref] [PubMed]

Jit, S.

D. Somvanshi and S. Jit, “Analysis of temperature-dependent electrical characteristics of n-ZnO nanowires (NWs)/p-Si heterojunction diodes,” IEEE Theory Nanotechnol. 13(1), 62–69 (2014).
[Crossref]

Jung, H. J.

H. J. Jung, S. Lee, Y. Yu, S. M. Hong, H. C. Choi, and M. Y. Choi, “Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions,” Thin Solid Films 524, 144–150 (2012).
[Crossref]

Kang, H. W.

H. W. Kang, J. Leem, S. Y. Yoon, and H. J. Sung, “Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application,” Nanoscale 6(5), 2840–2846 (2014).
[Crossref] [PubMed]

Kim, C. R.

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

Ko, Y.

S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
[Crossref] [PubMed]

Lee, J. Y.

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

Lee, S.

S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
[Crossref] [PubMed]

H. J. Jung, S. Lee, Y. Yu, S. M. Hong, H. C. Choi, and M. Y. Choi, “Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions,” Thin Solid Films 524, 144–150 (2012).
[Crossref]

Lee, T. M.

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

Leem, J.

H. W. Kang, J. Leem, S. Y. Yoon, and H. J. Sung, “Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application,” Nanoscale 6(5), 2840–2846 (2014).
[Crossref] [PubMed]

Li, B. Z.

S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method,” Appl. Phys., A Mater. Sci. Process. 94(4), 775–780 (2009).
[Crossref]

Li, J.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Li, W.

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

Liu, C.

X. W. Gan, T. Wang, H. Wu, and C. Liu, “ZnO deposited on Si (111) with Al2O3 buffer layer by atomic layer deposition,” Vacuum 107, 120–123 (2014).
[Crossref]

T. Wang, H. Wu, C. Chen, and C. Liu, “Growth, optical, and electrical properties of nonpolar m-plane ZnO on p-Si substrates with Al2O3 buffer layers,” Appl. Phys. Lett. 100(1), 011901 (2012).
[Crossref]

Liu, D.

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Liu, S.

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Liu, S. Y.

S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method,” Appl. Phys., A Mater. Sci. Process. 94(4), 775–780 (2009).
[Crossref]

Liu, X.

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Liu, X. Y.

Liu, X.-Y.

P. N. Ni, C. X. Shan, S. P. Wang, X.-Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(29), 4445–4449 (2013).
[Crossref]

Lord, A. M.

A. M. Lord, A. S. Walton, T. G. Maffeis, M. B. Ward, P. Davies, and S. P. Wilks, “ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method,” Nanotechnology 25(42), 425706 (2014).
[Crossref] [PubMed]

Lu, H. L.

Luan, P.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Lun, N.

H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. Eng. A 393(1-2), 80–82 (2005).
[Crossref]

Maffeis, T. G.

A. M. Lord, A. S. Walton, T. G. Maffeis, M. B. Ward, P. Davies, and S. P. Wilks, “ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method,” Nanotechnology 25(42), 425706 (2014).
[Crossref] [PubMed]

Matsushige, K.

K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, “Effects of thermal annealing of ZnO layers grown by MBE,” J. Cryst. Growth 214, 312–315 (2000).
[Crossref]

Mirdamadi, Sh.

H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vacuum 86(1), 101–105 (2011).
[Crossref]

Motayed, A.

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

Nguyen, N. V.

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

Ni, P. N.

P. N. Ni, C. X. Shan, S. P. Wang, X.-Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(29), 4445–4449 (2013).
[Crossref]

Nourbakhsh, A. A.

H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vacuum 86(1), 101–105 (2011).
[Crossref]

Ogata, K.

K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, “Effects of thermal annealing of ZnO layers grown by MBE,” J. Cryst. Growth 214, 312–315 (2000).
[Crossref]

Park, J.

S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
[Crossref] [PubMed]

Park, J. H.

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

Qu, X. P.

S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method,” Appl. Phys., A Mater. Sci. Process. 94(4), 775–780 (2009).
[Crossref]

Rezaie, H. R.

H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vacuum 86(1), 101–105 (2011).
[Crossref]

Ru, G. P.

S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method,” Appl. Phys., A Mater. Sci. Process. 94(4), 775–780 (2009).
[Crossref]

Ryu, H.

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

Sakurai, K.

K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, “Effects of thermal annealing of ZnO layers grown by MBE,” J. Cryst. Growth 214, 312–315 (2000).
[Crossref]

Seo, H.

S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
[Crossref] [PubMed]

Shan, C. X.

P. N. Ni, C. X. Shan, S. P. Wang, X.-Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(29), 4445–4449 (2013).
[Crossref]

Shen, D. Z.

P. N. Ni, C. X. Shan, S. P. Wang, X.-Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(29), 4445–4449 (2013).
[Crossref]

Shin, C. M.

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

Shin, S.

S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
[Crossref] [PubMed]

Somvanshi, D.

D. Somvanshi and S. Jit, “Analysis of temperature-dependent electrical characteristics of n-ZnO nanowires (NWs)/p-Si heterojunction diodes,” IEEE Theory Nanotechnol. 13(1), 62–69 (2014).
[Crossref]

Son, C. S.

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

Sullivan, N. F.

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

Sun, Q. Q.

Sun, Y.

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Sung, H. J.

H. W. Kang, J. Leem, S. Y. Yoon, and H. J. Sung, “Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application,” Nanoscale 6(5), 2840–2846 (2014).
[Crossref] [PubMed]

Tu, M.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Walton, A. S.

A. M. Lord, A. S. Walton, T. G. Maffeis, M. B. Ward, P. Davies, and S. P. Wilks, “ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method,” Nanotechnology 25(42), 425706 (2014).
[Crossref] [PubMed]

Wan, J.

S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method,” Appl. Phys., A Mater. Sci. Process. 94(4), 775–780 (2009).
[Crossref]

Wang, P. F.

Wang, S.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Wang, S. P.

P. N. Ni, C. X. Shan, S. P. Wang, X.-Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(29), 4445–4449 (2013).
[Crossref]

Wang, T.

X. W. Gan, T. Wang, H. Wu, and C. Liu, “ZnO deposited on Si (111) with Al2O3 buffer layer by atomic layer deposition,” Vacuum 107, 120–123 (2014).
[Crossref]

T. Wang, H. Wu, C. Chen, and C. Liu, “Growth, optical, and electrical properties of nonpolar m-plane ZnO on p-Si substrates with Al2O3 buffer layers,” Appl. Phys. Lett. 100(1), 011901 (2012).
[Crossref]

Ward, M. B.

A. M. Lord, A. S. Walton, T. G. Maffeis, M. B. Ward, P. Davies, and S. P. Wilks, “ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method,” Nanotechnology 25(42), 425706 (2014).
[Crossref] [PubMed]

Wei, H.

H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. Eng. A 393(1-2), 80–82 (2005).
[Crossref]

Wen, B.

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

Wilks, S. P.

A. M. Lord, A. S. Walton, T. G. Maffeis, M. B. Ward, P. Davies, and S. P. Wilks, “ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method,” Nanotechnology 25(42), 425706 (2014).
[Crossref] [PubMed]

Willander, M.

L. L. Yang, Q. X. Zhao, M. Willander, and J. H. Yang, “Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition,” J. Cryst. Growth 311(4), 1046–1050 (2009).
[Crossref]

Wu, D. H.

J. D. Hwang, D. H. Wu, and S. B. Hwang, “Inserting an i-ZnO layer to increase the performance of p-Si/n-ZnO heterojunction photodetectors,” Mater. Sci. Semicond. Process. 39, 132–135 (2015).
[Crossref]

Wu, H.

X. W. Gan, T. Wang, H. Wu, and C. Liu, “ZnO deposited on Si (111) with Al2O3 buffer layer by atomic layer deposition,” Vacuum 107, 120–123 (2014).
[Crossref]

T. Wang, H. Wu, C. Chen, and C. Liu, “Growth, optical, and electrical properties of nonpolar m-plane ZnO on p-Si substrates with Al2O3 buffer layers,” Appl. Phys. Lett. 100(1), 011901 (2012).
[Crossref]

Wu, Y.

H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. Eng. A 393(1-2), 80–82 (2005).
[Crossref]

Xie, S.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Xie, T.

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

Yang, B.

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Yang, J. H.

L. L. Yang, Q. X. Zhao, M. Willander, and J. H. Yang, “Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition,” J. Cryst. Growth 311(4), 1046–1050 (2009).
[Crossref]

Yang, L.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Yang, L. L.

L. L. Yang, Q. X. Zhao, M. Willander, and J. H. Yang, “Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition,” J. Cryst. Growth 311(4), 1046–1050 (2009).
[Crossref]

Yin, Y.

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Yoon, S. Y.

H. W. Kang, J. Leem, S. Y. Yoon, and H. J. Sung, “Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application,” Nanoscale 6(5), 2840–2846 (2014).
[Crossref] [PubMed]

Yu, M.

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Yu, Y.

H. J. Jung, S. Lee, Y. Yu, S. M. Hong, H. C. Choi, and M. Y. Choi, “Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions,” Thin Solid Films 524, 144–150 (2012).
[Crossref]

Zeng, Q.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Zhang, D. W.

Zhang, Q.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Zhang, X.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Zhang, Y.

Zhao, D.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Zhao, Q. X.

L. L. Yang, Q. X. Zhao, M. Willander, and J. H. Yang, “Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition,” J. Cryst. Growth 311(4), 1046–1050 (2009).
[Crossref]

Zhou, W.

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett. 90(24), 243106 (2007).
[Crossref]

T. Wang, H. Wu, C. Chen, and C. Liu, “Growth, optical, and electrical properties of nonpolar m-plane ZnO on p-Si substrates with Al2O3 buffer layers,” Appl. Phys. Lett. 100(1), 011901 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method,” Appl. Phys., A Mater. Sci. Process. 94(4), 775–780 (2009).
[Crossref]

Curr. Appl. Phys. (1)

C. R. Kim, J. Y. Lee, J. H. Heo, C. M. Shin, T. M. Lee, J. H. Park, H. Ryu, J. H. Chang, and C. S. Son, “Effects of annealing temperature and Al2O3 buffer layer on ZnO thin films grown by atomic layer deposition,” Curr. Appl. Phys. 10(2), 298–301 (2010).
[Crossref]

IEEE Theory Nanotechnol. (1)

D. Somvanshi and S. Jit, “Analysis of temperature-dependent electrical characteristics of n-ZnO nanowires (NWs)/p-Si heterojunction diodes,” IEEE Theory Nanotechnol. 13(1), 62–69 (2014).
[Crossref]

J. Cryst. Growth (2)

L. L. Yang, Q. X. Zhao, M. Willander, and J. H. Yang, “Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition,” J. Cryst. Growth 311(4), 1046–1050 (2009).
[Crossref]

K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, “Effects of thermal annealing of ZnO layers grown by MBE,” J. Cryst. Growth 214, 312–315 (2000).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

P. N. Ni, C. X. Shan, S. P. Wang, X.-Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(29), 4445–4449 (2013).
[Crossref]

J. Nanomater. (1)

H. S. Chin and L. S. Chao, “The effect of thermal annealing processes on structural and photoluminescence of zinc oxide thin film,” J. Nanomater. 2013, 424953 (2013).
[Crossref]

Mater. Sci. Eng. A (1)

H. Wei, Y. Wu, N. Lun, and C. Hu, “Hydrothermal synthesis and characterization of ZnO nanorods,” Mater. Sci. Eng. A 393(1-2), 80–82 (2005).
[Crossref]

Mater. Sci. Semicond. Process. (1)

J. D. Hwang, D. H. Wu, and S. B. Hwang, “Inserting an i-ZnO layer to increase the performance of p-Si/n-ZnO heterojunction photodetectors,” Mater. Sci. Semicond. Process. 39, 132–135 (2015).
[Crossref]

Nanoscale (2)

H. W. Kang, J. Leem, S. Y. Yoon, and H. J. Sung, “Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application,” Nanoscale 6(5), 2840–2846 (2014).
[Crossref] [PubMed]

D. Zhao, X. Zhang, H. Dong, L. Yang, Q. Zeng, J. Li, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, S. Wang, W. Zhou, and S. Xie, “Surface modification effect on photoluminescence of individual ZnO nanorods with different diameters,” Nanoscale 5(10), 4443–4448 (2013).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

S. Bang, S. Lee, Y. Ko, J. Park, S. Shin, H. Seo, and H. Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition,” Nanoscale Res. Lett. 7(1), 290 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

A. M. Lord, A. S. Walton, T. G. Maffeis, M. B. Ward, P. Davies, and S. P. Wilks, “ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method,” Nanotechnology 25(42), 425706 (2014).
[Crossref] [PubMed]

Opt. Express (1)

RSC Advances (2)

R. Debnath, T. Xie, B. Wen, W. Li, J. Y. Ha, N. F. Sullivan, N. V. Nguyen, and A. Motayed, “A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector,” RSC Advances 5(19), 14646–14652 (2015).
[Crossref]

Y. Yin, Y. Sun, M. Yu, X. Liu, B. Yang, D. Liu, S. Liu, W. Cao, and M. N. R. Ashfold, “Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer,” RSC Advances 4(84), 44452–44456 (2014).
[Crossref]

Thin Solid Films (2)

H. J. Jung, S. Lee, Y. Yu, S. M. Hong, H. C. Choi, and M. Y. Choi, “Low-temperature hydrothermal growth of ZnO nanorods on sol–gel prepared ZnO seed layers: Optimal growth conditions,” Thin Solid Films 524, 144–150 (2012).
[Crossref]

J. D. Hwang and Y. H. Chen, “Effects of pre-annealing conditions on the characteristics of ZnO nanorods and ZnO/p-Si heterojunction diodes grown through hydrothermal method,” Thin Solid Films 520(16), 5294–5299 (2012).
[Crossref]

Vacuum (2)

H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vacuum 86(1), 101–105 (2011).
[Crossref]

X. W. Gan, T. Wang, H. Wu, and C. Liu, “ZnO deposited on Si (111) with Al2O3 buffer layer by atomic layer deposition,” Vacuum 107, 120–123 (2014).
[Crossref]

Other (2)

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).

D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of physical models of n-ZnO NW/Al2O3/p-Si heterojunction grown by ALD and hydrothermal method.
Fig. 2
Fig. 2 XRD patterns of ZnO seed layers deposited directly on Si substrate or annealed at various temperatures with an Al2O3 buffer layer. (b) XRD patterns of the corresponding ZnO nanowires grown on the ZnO seed layers above.
Fig. 3
Fig. 3 SEM surface (a) and cross section (b) images of the as-grown ZnO nanowires.
Fig. 4
Fig. 4 I-V characteristics of the n-ZnO NWs/p-Si heterojunction and n-ZnO NWs/Al2O3/p-Si heterojunction with ZnO seed layers annealed at various temperatures in O2 atmosphere.
Fig. 5
Fig. 5 I−V curves of n-ZnO NWs/p-Si heterojunction and n-ZnO NWs/Al2O3/p-Si heterojunction with ZnO seed layer annealed at various temperatures measured in the dark and under the 365 nm UV illumination.
Fig. 6
Fig. 6 The energy-band diagrams of n-ZnO/Al2O3/p-Si HJ under reverse bias and in UV illumination.

Tables (1)

Tables Icon

Table 1 The Thicknesses of ZnO Seed Layers Annealed at Different Temperatures in O2, as well as the Rectification Ratio and UV/dark Current Ratio of the Corresponding n-ZnO NWs/p-Si HJs.

Metrics