Abstract

We propose two schemes of holographic imaging with an object that has no any macro structure itself. The tunable electromagnetically induced grating (EIG) is such a kind of object. We obtain an EIG based on the periodically modulated strong susceptibility in a three-level ladder-type hybrid artificial molecule, which is comprised of a semiconductor quantum dot and a metal nanoparticle coupled via the Coulomb interaction. The holographic interference pattern is detected either directly in the way of classical holographic imaging with a coherent field being the imaging light, or indirectly and nonlocally in the way of two-photon coincidence measurement with a pair of entangled photons playing the role of imaging light. This work provides a practical prototype of electromagnetically induced transparency-based holographic solid-state devices for all-optical classical and quantum information processing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced holographic imaging using monolayer graphene

Asad Hafiz and Sajid Qamar
Opt. Express 28(2) 1970-1986 (2020)

Photoinduced diffraction grating in hybrid artificial molecule

Zhi-Hong Xiao, Li Zheng, and HongZhen Lin
Opt. Express 20(2) 1219-1229 (2012)

Tunable double electromagnetically induced grating with an incoherent pump field

Azar Vafafard and Mostafa Sahrai
J. Opt. Soc. Am. B 37(2) 244-250 (2020)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref] [PubMed]
  2. A. Joshi, “Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system,” Phys. Rev. B 79(11), 115315 (2009).
    [Crossref]
  3. P. K. Nielsen, H. Thyrrestrup, J. Mørk, and B. Tromborg, “Numerical investigation of electromagnetically induced transparency in a quantum dot structure,” Opt. Express 15(10), 6396–6408 (2007).
    [Crossref] [PubMed]
  4. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
    [Crossref] [PubMed]
  5. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
    [Crossref] [PubMed]
  6. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
    [Crossref]
  7. S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
    [Crossref] [PubMed]
  8. S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
    [Crossref] [PubMed]
  9. M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
    [Crossref] [PubMed]
  10. J. W. Gao, Q. Q. Bao, R. G. Wan, C. L. Cui, and J. H. Wu, “Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence,” Phys. Rev. A 83(5), 053815 (2011).
    [Crossref]
  11. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
    [Crossref]
  12. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
    [Crossref]
  13. Z. H. Xiao, L. Zheng, and H. Z. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express 20(2), 1219–1229 (2012).
    [Crossref] [PubMed]
  14. L. E. E. de Araujo, “Electromagnetically induced phase grating,” Opt. Lett. 35(7), 977–979 (2010).
    [Crossref] [PubMed]
  15. F. X. Zhou, Y. H. Qi, H. Sun, D. J. Chen, J. Yang, Y. P. Niu, and S. Q. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21(10), 12249–12259 (2013).
    [Crossref] [PubMed]
  16. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(4), 401–407 (1836).
  17. J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
    [Crossref]
  18. T. H. Qiu, G. J. Yang, and Q. Bian, “Electromagnetically induced second-order Talbot effect,” Euro. Phys. Lett. 101(4), 44004 (2013).
    [Crossref]
  19. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  20. H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
    [Crossref] [PubMed]
  21. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
    [Crossref] [PubMed]
  22. A. Adibi, K. Buse, and D. Psaltis, “Theoretical analysis of two-step holographic recording with high-intensity pulses,” Phys. Rev. A 63(2), 023813 (2001).
    [Crossref]
  23. S. H. Zhang, S. Gan, D. Z. Cao, J. Xiong, X. D. Zhang, and K. G. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
    [Crossref]
  24. K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80(4), 043820 (2009).
    [Crossref]
  25. Y. C. Liu and L. M. Kuang, “Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation,” Phys. Rev. A 83(5), 053808 (2011).
    [Crossref]
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  27. Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett. 104(18), 183901 (2010).
    [Crossref] [PubMed]

2013 (2)

2012 (2)

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Z. H. Xiao, L. Zheng, and H. Z. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express 20(2), 1219–1229 (2012).
[Crossref] [PubMed]

2011 (3)

J. W. Gao, Q. Q. Bao, R. G. Wan, C. L. Cui, and J. H. Wu, “Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence,” Phys. Rev. A 83(5), 053815 (2011).
[Crossref]

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

Y. C. Liu and L. M. Kuang, “Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation,” Phys. Rev. A 83(5), 053808 (2011).
[Crossref]

2010 (3)

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett. 104(18), 183901 (2010).
[Crossref] [PubMed]

L. E. E. de Araujo, “Electromagnetically induced phase grating,” Opt. Lett. 35(7), 977–979 (2010).
[Crossref] [PubMed]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[Crossref]

2009 (6)

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref] [PubMed]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
[Crossref] [PubMed]

A. Joshi, “Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system,” Phys. Rev. B 79(11), 115315 (2009).
[Crossref]

S. H. Zhang, S. Gan, D. Z. Cao, J. Xiong, X. D. Zhang, and K. G. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80(4), 043820 (2009).
[Crossref]

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
[Crossref] [PubMed]

2008 (1)

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[Crossref] [PubMed]

2001 (1)

A. Adibi, K. Buse, and D. Psaltis, “Theoretical analysis of two-step holographic recording with high-intensity pulses,” Phys. Rev. A 63(2), 023813 (2001).
[Crossref]

1999 (1)

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[Crossref]

1998 (1)

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

1836 (1)

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(4), 401–407 (1836).

Adibi, A.

A. Adibi, K. Buse, and D. Psaltis, “Theoretical analysis of two-step holographic recording with high-intensity pulses,” Phys. Rev. A 63(2), 023813 (2001).
[Crossref]

Alexandrov, S. A.

Artoni, M.

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[Crossref] [PubMed]

Artuso, R. D.

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[Crossref]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[Crossref] [PubMed]

Bao, Q. Q.

J. W. Gao, Q. Q. Bao, R. G. Wan, C. L. Cui, and J. H. Wu, “Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence,” Phys. Rev. A 83(5), 053815 (2011).
[Crossref]

Bao, X. H.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Bian, Q.

T. H. Qiu, G. J. Yang, and Q. Bian, “Electromagnetically induced second-order Talbot effect,” Euro. Phys. Lett. 101(4), 44004 (2013).
[Crossref]

Bryant, G. W.

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[Crossref]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[Crossref] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

Buse, K.

A. Adibi, K. Buse, and D. Psaltis, “Theoretical analysis of two-step holographic recording with high-intensity pulses,” Phys. Rev. A 63(2), 023813 (2001).
[Crossref]

Cao, D. Z.

S. H. Zhang, S. Gan, D. Z. Cao, J. Xiong, X. D. Zhang, and K. G. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Chen, D. J.

Chen, H. Y.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

Chen, S.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Chen, X. H.

K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80(4), 043820 (2009).
[Crossref]

Cui, C. L.

J. W. Gao, Q. Q. Bao, R. G. Wan, C. L. Cui, and J. H. Wu, “Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence,” Phys. Rev. A 83(5), 053815 (2011).
[Crossref]

Dai, H. N.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

de Araujo, L. E. E.

Deng, L.

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref] [PubMed]

Deng, Y. J.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Du, S. W.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Gan, S.

S. H. Zhang, S. Gan, D. Z. Cao, J. Xiong, X. D. Zhang, and K. G. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Gao, J. W.

J. W. Gao, Q. Q. Bao, R. G. Wan, C. L. Cui, and J. H. Wu, “Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence,” Phys. Rev. A 83(5), 053815 (2011).
[Crossref]

Gong, S. Q.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Govorov, A. O.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

Gutzler, T.

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Hillman, T. R.

Huang, W. P.

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref] [PubMed]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Imoto, N.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[Crossref]

Jin, X. M.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Joshi, A.

A. Joshi, “Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system,” Phys. Rev. B 79(11), 115315 (2009).
[Crossref]

Kuang, L. M.

Y. C. Liu and L. M. Kuang, “Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation,” Phys. Rev. A 83(5), 053808 (2011).
[Crossref]

La Rocca, G. C.

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[Crossref] [PubMed]

Li, L.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Li, X.

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref] [PubMed]

Li, Y. Q.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Lin, H. Z.

Ling, H. Y.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Liu, N. L.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Liu, Q.

K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80(4), 043820 (2009).
[Crossref]

Liu, Y. C.

Y. C. Liu and L. M. Kuang, “Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation,” Phys. Rev. A 83(5), 053808 (2011).
[Crossref]

Luo, K. H.

K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80(4), 043820 (2009).
[Crossref]

Mitsunaga, M.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[Crossref]

Mørk, J.

Nielsen, P. K.

Niu, Y. P.

Pan, J. W.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Psaltis, D.

A. Adibi, K. Buse, and D. Psaltis, “Theoretical analysis of two-step holographic recording with high-intensity pulses,” Phys. Rev. A 63(2), 023813 (2001).
[Crossref]

Qi, Y. H.

Qiu, T. H.

T. H. Qiu, G. J. Yang, and Q. Bian, “Electromagnetically induced second-order Talbot effect,” Euro. Phys. Lett. 101(4), 44004 (2013).
[Crossref]

Rui, J.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Sadeghi, S. M.

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
[Crossref] [PubMed]

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref] [PubMed]

Sampson, D. D.

Sun, H.

Talbot, H. F.

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(4), 401–407 (1836).

Thyrrestrup, H.

Tromborg, B.

Wan, R. G.

J. W. Gao, Q. Q. Bao, R. G. Wan, C. L. Cui, and J. H. Wu, “Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence,” Phys. Rev. A 83(5), 053815 (2011).
[Crossref]

Wang, K. G.

S. H. Zhang, S. Gan, D. Z. Cao, J. Xiong, X. D. Zhang, and K. G. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Wen, J. M.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett. 104(18), 183901 (2010).
[Crossref] [PubMed]

K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80(4), 043820 (2009).
[Crossref]

Wu, J. H.

J. W. Gao, Q. Q. Bao, R. G. Wan, C. L. Cui, and J. H. Wu, “Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence,” Phys. Rev. A 83(5), 053815 (2011).
[Crossref]

Wu, L. A.

K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80(4), 043820 (2009).
[Crossref]

Xiao, M.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett. 104(18), 183901 (2010).
[Crossref] [PubMed]

K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80(4), 043820 (2009).
[Crossref]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Xiao, Z. H.

Xiong, J.

S. H. Zhang, S. Gan, D. Z. Cao, J. Xiong, X. D. Zhang, and K. G. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Yang, G. J.

T. H. Qiu, G. J. Yang, and Q. Bian, “Electromagnetically induced second-order Talbot effect,” Euro. Phys. Lett. 101(4), 44004 (2013).
[Crossref]

Yang, J.

Yang, S. J.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Zhang, H.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Zhang, S. H.

S. H. Zhang, S. Gan, D. Z. Cao, J. Xiong, X. D. Zhang, and K. G. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Zhang, W.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

Zhang, X. D.

S. H. Zhang, S. Gan, D. Z. Cao, J. Xiong, X. D. Zhang, and K. G. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Zhang, Y.

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett. 104(18), 183901 (2010).
[Crossref] [PubMed]

Zhao, B.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Zhao, T. M.

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Zheng, L.

Zhou, F. X.

Zhu, S. N.

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett. 104(18), 183901 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98(8), 081108 (2011).
[Crossref]

Euro. Phys. Lett. (1)

T. H. Qiu, G. J. Yang, and Q. Bian, “Electromagnetically induced second-order Talbot effect,” Euro. Phys. Lett. 101(4), 44004 (2013).
[Crossref]

Nano Lett. (1)

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[Crossref] [PubMed]

Nanotechnology (2)

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref] [PubMed]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 20(22), 225401 (2009).
[Crossref] [PubMed]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Philos. Mag. (1)

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(4), 401–407 (1836).

Phys. Rev. A (7)

A. Adibi, K. Buse, and D. Psaltis, “Theoretical analysis of two-step holographic recording with high-intensity pulses,” Phys. Rev. A 63(2), 023813 (2001).
[Crossref]

S. H. Zhang, S. Gan, D. Z. Cao, J. Xiong, X. D. Zhang, and K. G. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80(4), 043820 (2009).
[Crossref]

Y. C. Liu and L. M. Kuang, “Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation,” Phys. Rev. A 83(5), 053808 (2011).
[Crossref]

J. W. Gao, Q. Q. Bao, R. G. Wan, C. L. Cui, and J. H. Wu, “Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence,” Phys. Rev. A 83(5), 053815 (2011).
[Crossref]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999).
[Crossref]

Phys. Rev. B (2)

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82(19), 195419 (2010).
[Crossref]

A. Joshi, “Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system,” Phys. Rev. B 79(11), 115315 (2009).
[Crossref]

Phys. Rev. Lett. (5)

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett. 104(18), 183901 (2010).
[Crossref] [PubMed]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

H. N. Dai, H. Zhang, S. J. Yang, T. M. Zhao, J. Rui, Y. J. Deng, L. Li, N. L. Liu, S. Chen, X. H. Bao, X. M. Jin, B. Zhao, and J. W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108(21), 210501 (2012).
[Crossref] [PubMed]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of hybrid artificial molecule composed of spherical metal nanoparticle and semiconductor quantum dot, (b) the energy structure of the system, (c) configuration of EIG generation, AM stands for the artificial molecule.
Fig. 2
Fig. 2 Output profiles of the object field Eo(x,L) with inter-particle distances R = 10nm (black solid curve), R = 13nm (red dashed curve) and R = 20nm (green dash-dotted curve). The other parameters are Δ o = Δ c = 0,γsg = 1ns−1,γeg = 3γsg and Ω c = 15γsg.
Fig. 3
Fig. 3 Setup to realize HICHE. AM: hybrid artificial molecule; BS: beam splitter; M: mirror.
Fig. 4
Fig. 4 Sketch of HIQHE. AM, BS and M are hybrid artificial molecule, beam splitter and mirror, respectively.
Fig. 5
Fig. 5 (a) Imaging obtained in the EICHI scheme for the self-imaging number m = 1 (black solid curve) and m = 2 (red dashed curve). Imaging obtained in the EIQHI scheme for (b) scanning detector Di but fixing Ds at xs = 0, the black solid, the red dashed and green dash-dotted curves are related to zso2 = 10cm,zi = 6cm;zso2 = 7.5cm,zi = 11cm;zso2 = 10cm,zi = 26cm, for (c) scanning both Di and Ds in the way xs = xi (black solid curve), xs = 0 (red dashed curve) and xs = −xi (green dash-dotted curve) with zso2 = 10cm,zi = 26cm, respectively. zso1 = 4cm,R = 10nm. Other parameters are the same as Fig. 2.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ s g = ( γ s g + i Δ o ) ρ s g + i Ω c cos ( π x / Λ ) ρ e g + i Ω ( ρ g g ρ s s ) , ρ ˙ e g = [ γ e g + i ( Δ o + Δ c ) ] ρ e g + i Ω c cos ( π x / Λ ) ρ s g + i Ω ρ e s ,
χ = N μ g s 2 h ¯ ε b ( 1 + C ) [ ( A Δ o ) + i ( B + γ s g ) ] [ Δ o A + D ] ( A Δ o ) ( B + γ s g ) 2
E o ( x , L ) = E o ( x , 0 ) e k o χ L / 2 e i k o χ L / 2 ,
E o ( x , L ) = n = + c n exp [ i 2 n π x Λ ] ,
E r * ( x ) E o ( x ) = d x 0 d x 0 h r * ( x , x 0 ) h o ( x , x 0 ) E 0 * ( x 0 ) E 0 ( x 0 ) ,
h o ( x , x 0 ) d x E o ( x , L ) exp [ i k ( x 0 x ) 2 2 z o 1 + i k ( x x ) 2 2 z o 2 ] , h r ( x , x 0 ) exp [ i k ( x x 0 ) 2 2 z r ] .
E r * ( x ) E o ( x ) d x E o ( x , L ) exp [ i k 2 z o 2 ( x x ) 2 ] ,
E r * ( x ) E o ( x ) n = + c n exp [ i z o 2 n 2 π λ Λ 2 ] exp [ i 2 n π x Λ ] .
R ( x s , x i ) E i ( ) ( x i ) E s ( ) ( x s ) E s ( + ) ( x s ) E i ( + ) ( x i ) = | 0 | E s ( + ) ( x s ) E i ( + ) ( x i ) | Ψ | 2 ,
I ( x s , x i ) = E i ( ) ( x i ) E s r ( ) ( x s ) E s o ( + ) ( x s ) E i ( + ) ( x i ) + c . c . = Ψ | E i ( ) ( x i ) E s r ( ) ( x s ) | 0 × 0 | E s o ( + ) ( x s ) E i ( + ) ( x i ) | Ψ + c . c ..
0 | E j ( + ) ( x s ) E i ( + ) ( x i ) | Ψ d x 0 h j ( x s , x 0 ) h i ( x i , x 0 ) , ( j = s o , s r ) ,
h s o ( x s , x 0 ) d x E o ( x , L ) exp [ i k s ( x 0 x ) 2 2 z s o 1 + i k s ( x x s ) 2 2 z s o 2 ] , h s r ( x s , x 0 , z s r ) exp ( i k s z s r ) exp [ i k s ( x s x 0 ) 2 2 z s r ] , h i ( x i , x 0 , z i ) exp ( i k i z i ) exp [ i k i ( x i x 0 ) 2 2 z i ] .
I ( x s , x i ) n = + c n exp { i 2 π 2 n 2 Λ 2 k s z s o 2 ( z s o 1 + β z i ) z s o 1 + z s o 2 + β z i } exp { i z s o 2 x i ( z s o 1 + β z i ) x s z s o 1 + z s o 2 + β z i 2 π n Λ } ,
I ( x i ) I ( x s , x i ) d x s = n = + c n exp { i 2 π 2 n 2 Λ 2 k s ( z s o 2 z s r β z i ) ( z s o 1 + β z i ) z s o 1 + z s o 2 z s r } exp { i 2 π n Λ x i } ,

Metrics