Abstract

In femtosecond double-pulse laser-induced breakdown spectroscopy, collinear double-pulse performance is investigated experimentally using various laser wavelength combinations of 800 nm and 400 nm Ti: sapphire lasers. The induced plasma emission line collected by BK7 lenses is the Si (I) at 390.55 nm. The double-pulse time separation ranges from −300 ps to 300 ps. The line intensity is dependent on the time separation of the dual-wavelength femtosecond double-pulse, and its behavior is unlike that of single-wavelength femtosecond double-pulses. Optical emission intensity can be enhanced by selecting appropriate time separation between sub-pulses. This result is particularly advantageous in the context of femtosecond laser-induced breakdown spectroscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation

L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu
Opt. Express 20(2) 1436-1443 (2012)

Study of laser-induced breakdown emission from liquid under double-pulse excitation

Virendra N. Rai, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 42(12) 2094-2101 (2003)

Effect of laser pulse energy on orthogonal double femtosecond pulse laser-induced breakdown spectroscopy

Xiaoliang Liu, Shaohua Sun, Xiaoshan Wang, Zuoye Liu, Qingcao Liu, Pengji Ding, Zeqin Guo, and Bitao Hu
Opt. Express 21(S4) A704-A713 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) (Cambridge U. Press, 2006).
    [Crossref]
  2. O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “2013 atomic spectrometry update-a review of advances in environmental analysis,” J. Anal. Atom. Spectrom. 29, 17–50 (2014).
    [Crossref]
  3. W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
    [Crossref]
  4. P. K. Pandey and R. K. Thareja, “Rotating copper plasmoid in external magnetic field,” Phys. Plasmas 20, 022117 (2013).
    [Crossref]
  5. B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20, 053503 (2013).
    [Crossref]
  6. Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21, 15974–15979 (2013).
    [Crossref] [PubMed]
  7. A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
    [Crossref]
  8. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance libs sensitivity for trace elements determination in soils,” J. Anal. Atom. Spectrom. 25, 837–848 (2010).
    [Crossref]
  9. A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85, 10180–10187 (2013).
    [Crossref] [PubMed]
  10. A. Chen, Y. Jiang, T. Wang, J. Shao, and M. Jin, “Comparison of plasma temperature and electron density on nanosecond laser ablation of cu and nano-cu,” Phys. Plasmas 22, 033301 (2015).
    [Crossref]
  11. C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. Atom. Spectrom. 25, 635–644 (2010).
    [Crossref]
  12. L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22, 7686–7693 (2014).
    [Crossref] [PubMed]
  13. L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23, 15047–15056 (2015).
    [Crossref] [PubMed]
  14. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
    [Crossref]
  15. J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
    [Crossref]
  16. A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
    [Crossref] [PubMed]
  17. D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, “A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry,” Plasma Sci. Technol. 16, 374–379 (2014).
    [Crossref]
  18. V. Sivakumaran, A. Kumar, R. K. Singh, V. Prahlad, and H. C. Joshi, “Atomic processes in emission characteristics of a lithium plasma plume formed by double-pulse laser ablation,” Plasma Sci. Technol. 15, 204–208 (2013).
    [Crossref]
  19. L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental nd : Yag laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
    [Crossref]
  20. R. Ahmed and M. A. Baig, “A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy,” Opt. Laser Technol. 65, 113–118 (2015).
    [Crossref]
  21. F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85, 640–669 (2013).
    [Crossref]
  22. V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta B 63, 1006–1010 (2008).
    [Crossref]
  23. H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
    [Crossref]
  24. S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
    [Crossref]
  25. O. Balachninaitė, A. Baškevičius, K. Stankevičiūutė, K. Kuršelis, and V. Sirutkaitis, “Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses,” Lith. J. Phys. 50, 105–110 (2010).
    [Crossref]
  26. T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys. 92, 4918–4925 (2002).
    [Crossref]
  27. Z. Hu, S. Singha, Y. M. Liu, and R. J. Gordon, “Mechanism for the ablation of Si 〈111〉 with pairs of ultrashort laser pulses,” Appl. Phys. Lett. 90, 131910 (2007).
    [Crossref]
  28. A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
    [Crossref]
  29. P. P. Pronko, Z. Zhang, and P. A. VanRompay, “Critical density effects in femtosecond ablation plasmas and consequences for high intensity pulsed laser deposition,” Appl. Surf. Sci. 208, 492–501 (2003).
    [Crossref]
  30. R. Ahmed and M. A. Baig, “On the optimization for enhanced dual-pulse laser-induced breakdown spectroscopy,” IEEE T. Plasma Sci. 38, 2052–2055 (2010).
    [Crossref]
  31. H. Shakeel, M. Mumtaz, S. Shahzada, A. Nadeem, and S. U. Haq, “Spectroscopic characterization of laser ablated silicon plasma,” Plasma Sources Sci. T. 23, 035006 (2014).
    [Crossref]
  32. P. Diwakar, S. Harilal, J. Freeman, and A. Hassanein, “Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B 87, 65–73 (2013).
    [Crossref]
  33. A. O. Er, J. Chen, J. Tang, and P. M. Rentzepis, “Coherent acoustic wave oscillations and melting on Ag (111) surface by time resolved x-ray diffraction,” Appl. Phys. Lett. 100, 151910 (2012).
    [Crossref]
  34. J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” PNAS 108, 18887–18892 (2011).
    [Crossref] [PubMed]
  35. S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520 (2008).
    [Crossref]
  36. M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15, 546–551 (2013).
    [Crossref]
  37. Y. Qi, H. X. Qi, Q. X. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
    [Crossref]
  38. B. Rashid, R. Ahmed, R. Ali, and M. Baig, “A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver,” Phys. Plasmas 18, 073301 (2011).
    [Crossref]
  39. S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [Crossref]
  40. Y. P. Ren, J. K. Chen, and Y. W. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110, 113102 (2011).
    [Crossref]
  41. D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
    [Crossref]

2015 (4)

A. Chen, Y. Jiang, T. Wang, J. Shao, and M. Jin, “Comparison of plasma temperature and electron density on nanosecond laser ablation of cu and nano-cu,” Phys. Plasmas 22, 033301 (2015).
[Crossref]

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23, 15047–15056 (2015).
[Crossref] [PubMed]

R. Ahmed and M. A. Baig, “A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy,” Opt. Laser Technol. 65, 113–118 (2015).
[Crossref]

Y. Qi, H. X. Qi, Q. X. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

2014 (5)

H. Shakeel, M. Mumtaz, S. Shahzada, A. Nadeem, and S. U. Haq, “Spectroscopic characterization of laser ablated silicon plasma,” Plasma Sources Sci. T. 23, 035006 (2014).
[Crossref]

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, “A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry,” Plasma Sci. Technol. 16, 374–379 (2014).
[Crossref]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22, 7686–7693 (2014).
[Crossref] [PubMed]

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “2013 atomic spectrometry update-a review of advances in environmental analysis,” J. Anal. Atom. Spectrom. 29, 17–50 (2014).
[Crossref]

2013 (11)

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
[Crossref]

P. K. Pandey and R. K. Thareja, “Rotating copper plasmoid in external magnetic field,” Phys. Plasmas 20, 022117 (2013).
[Crossref]

B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20, 053503 (2013).
[Crossref]

Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21, 15974–15979 (2013).
[Crossref] [PubMed]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85, 10180–10187 (2013).
[Crossref] [PubMed]

V. Sivakumaran, A. Kumar, R. K. Singh, V. Prahlad, and H. C. Joshi, “Atomic processes in emission characteristics of a lithium plasma plume formed by double-pulse laser ablation,” Plasma Sci. Technol. 15, 204–208 (2013).
[Crossref]

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85, 640–669 (2013).
[Crossref]

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

P. Diwakar, S. Harilal, J. Freeman, and A. Hassanein, “Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B 87, 65–73 (2013).
[Crossref]

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15, 546–551 (2013).
[Crossref]

2012 (2)

A. O. Er, J. Chen, J. Tang, and P. M. Rentzepis, “Coherent acoustic wave oscillations and melting on Ag (111) surface by time resolved x-ray diffraction,” Appl. Phys. Lett. 100, 151910 (2012).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

2011 (4)

A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
[Crossref] [PubMed]

J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” PNAS 108, 18887–18892 (2011).
[Crossref] [PubMed]

B. Rashid, R. Ahmed, R. Ali, and M. Baig, “A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver,” Phys. Plasmas 18, 073301 (2011).
[Crossref]

Y. P. Ren, J. K. Chen, and Y. W. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110, 113102 (2011).
[Crossref]

2010 (4)

O. Balachninaitė, A. Baškevičius, K. Stankevičiūutė, K. Kuršelis, and V. Sirutkaitis, “Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses,” Lith. J. Phys. 50, 105–110 (2010).
[Crossref]

R. Ahmed and M. A. Baig, “On the optimization for enhanced dual-pulse laser-induced breakdown spectroscopy,” IEEE T. Plasma Sci. 38, 2052–2055 (2010).
[Crossref]

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. Atom. Spectrom. 25, 635–644 (2010).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance libs sensitivity for trace elements determination in soils,” J. Anal. Atom. Spectrom. 25, 837–848 (2010).
[Crossref]

2008 (4)

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta B 63, 1006–1010 (2008).
[Crossref]

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[Crossref]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520 (2008).
[Crossref]

2007 (1)

Z. Hu, S. Singha, Y. M. Liu, and R. J. Gordon, “Mechanism for the ablation of Si 〈111〉 with pairs of ultrashort laser pulses,” Appl. Phys. Lett. 90, 131910 (2007).
[Crossref]

2006 (1)

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[Crossref]

2004 (1)

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

2003 (1)

P. P. Pronko, Z. Zhang, and P. A. VanRompay, “Critical density effects in femtosecond ablation plasmas and consequences for high intensity pulsed laser deposition,” Appl. Surf. Sci. 208, 492–501 (2003).
[Crossref]

2002 (2)

T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys. 92, 4918–4925 (2002).
[Crossref]

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental nd : Yag laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[Crossref]

Ahmed, R.

R. Ahmed and M. A. Baig, “A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy,” Opt. Laser Technol. 65, 113–118 (2015).
[Crossref]

B. Rashid, R. Ahmed, R. Ali, and M. Baig, “A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver,” Phys. Plasmas 18, 073301 (2011).
[Crossref]

R. Ahmed and M. A. Baig, “On the optimization for enhanced dual-pulse laser-induced breakdown spectroscopy,” IEEE T. Plasma Sci. 38, 2052–2055 (2010).
[Crossref]

Ali, R.

B. Rashid, R. Ahmed, R. Ali, and M. Baig, “A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver,” Phys. Plasmas 18, 073301 (2011).
[Crossref]

Anglos, D.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta B 63, 1006–1010 (2008).
[Crossref]

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[Crossref]

Bachelier, G.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Baig, M.

B. Rashid, R. Ahmed, R. Ali, and M. Baig, “A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver,” Phys. Plasmas 18, 073301 (2011).
[Crossref]

Baig, M. A.

R. Ahmed and M. A. Baig, “A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy,” Opt. Laser Technol. 65, 113–118 (2015).
[Crossref]

R. Ahmed and M. A. Baig, “On the optimization for enhanced dual-pulse laser-induced breakdown spectroscopy,” IEEE T. Plasma Sci. 38, 2052–2055 (2010).
[Crossref]

Balachninaite, O.

O. Balachninaitė, A. Baškevičius, K. Stankevičiūutė, K. Kuršelis, and V. Sirutkaitis, “Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses,” Lith. J. Phys. 50, 105–110 (2010).
[Crossref]

Baškevicius, A.

O. Balachninaitė, A. Baškevičius, K. Stankevičiūutė, K. Kuršelis, and V. Sirutkaitis, “Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses,” Lith. J. Phys. 50, 105–110 (2010).
[Crossref]

Bonse, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Bruno, D.

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[Crossref]

Butler, O. T.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “2013 atomic spectrometry update-a review of advances in environmental analysis,” J. Anal. Atom. Spectrom. 29, 17–50 (2014).
[Crossref]

Cabalin, L. M.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85, 640–669 (2013).
[Crossref]

Cairns, W. R. L.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “2013 atomic spectrometry update-a review of advances in environmental analysis,” J. Anal. Atom. Spectrom. 29, 17–50 (2014).
[Crossref]

Chaker, M.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. Atom. Spectrom. 25, 635–644 (2010).
[Crossref]

Chen, A.

A. Chen, Y. Jiang, T. Wang, J. Shao, and M. Jin, “Comparison of plasma temperature and electron density on nanosecond laser ablation of cu and nano-cu,” Phys. Plasmas 22, 033301 (2015).
[Crossref]

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

Chen, J.

A. O. Er, J. Chen, J. Tang, and P. M. Rentzepis, “Coherent acoustic wave oscillations and melting on Ag (111) surface by time resolved x-ray diffraction,” Appl. Phys. Lett. 100, 151910 (2012).
[Crossref]

J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” PNAS 108, 18887–18892 (2011).
[Crossref] [PubMed]

Chen, J. K.

Y. P. Ren, J. K. Chen, and Y. W. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110, 113102 (2011).
[Crossref]

Chen, K.

Chen, W.-K.

J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” PNAS 108, 18887–18892 (2011).
[Crossref] [PubMed]

Chen, Z.

Y. Qi, H. X. Qi, Q. X. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Choi, T. Y.

T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys. 92, 4918–4925 (2002).
[Crossref]

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance libs sensitivity for trace elements determination in soils,” J. Anal. Atom. Spectrom. 25, 837–848 (2010).
[Crossref]

Cook, J. M.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “2013 atomic spectrometry update-a review of advances in environmental analysis,” J. Anal. Atom. Spectrom. 29, 17–50 (2014).
[Crossref]

Davidson, C. M.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “2013 atomic spectrometry update-a review of advances in environmental analysis,” J. Anal. Atom. Spectrom. 29, 17–50 (2014).
[Crossref]

De Giacomo, A.

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85, 10180–10187 (2013).
[Crossref] [PubMed]

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[Crossref]

De Pascale, O.

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85, 10180–10187 (2013).
[Crossref] [PubMed]

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[Crossref]

Dell’Aglio, M.

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85, 10180–10187 (2013).
[Crossref] [PubMed]

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[Crossref]

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[Crossref]

Detalle, V.

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental nd : Yag laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[Crossref]

Ding, D.

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

Diwakar, P.

P. Diwakar, S. Harilal, J. Freeman, and A. Hassanein, “Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B 87, 65–73 (2013).
[Crossref]

Diwakar, P. K.

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Dong, C. Z.

D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, “A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry,” Plasma Sci. Technol. 16, 374–379 (2014).
[Crossref]

Effenberger, A. J.

A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
[Crossref] [PubMed]

Er, A. O.

A. O. Er, J. Chen, J. Tang, and P. M. Rentzepis, “Coherent acoustic wave oscillations and melting on Ag (111) surface by time resolved x-ray diffraction,” Appl. Phys. Lett. 100, 151910 (2012).
[Crossref]

Fan, L. S.

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance libs sensitivity for trace elements determination in soils,” J. Anal. Atom. Spectrom. 25, 837–848 (2010).
[Crossref]

Fortes, F. J.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85, 640–669 (2013).
[Crossref]

Fotakis, C.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta B 63, 1006–1010 (2008).
[Crossref]

Freeman, J.

P. Diwakar, S. Harilal, J. Freeman, and A. Hassanein, “Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B 87, 65–73 (2013).
[Crossref]

Gaudiuso, R.

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85, 10180–10187 (2013).
[Crossref] [PubMed]

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[Crossref]

Gawelda, W.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Gordon, R. J.

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520 (2008).
[Crossref]

Z. Hu, S. Singha, Y. M. Liu, and R. J. Gordon, “Mechanism for the ablation of Si 〈111〉 with pairs of ultrashort laser pulses,” Appl. Phys. Lett. 90, 131910 (2007).
[Crossref]

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[Crossref]

Goueguel, C.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. Atom. Spectrom. 25, 635–644 (2010).
[Crossref]

Grigoropoulos, C. P.

T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys. 92, 4918–4925 (2002).
[Crossref]

Guizard, S.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Guo, J.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

Gupta, G. P.

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15, 546–551 (2013).
[Crossref]

Haq, S. U.

H. Shakeel, M. Mumtaz, S. Shahzada, A. Nadeem, and S. U. Haq, “Spectroscopic characterization of laser ablated silicon plasma,” Plasma Sources Sci. T. 23, 035006 (2014).
[Crossref]

Harilal, S.

P. Diwakar, S. Harilal, J. Freeman, and A. Hassanein, “Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B 87, 65–73 (2013).
[Crossref]

Harilal, S. S.

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Hassanein, A.

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

P. Diwakar, S. Harilal, J. Freeman, and A. Hassanein, “Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B 87, 65–73 (2013).
[Crossref]

He, X. N.

Hou, Z. Y.

Hu, Z.

Y. Qi, H. X. Qi, Q. X. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520 (2008).
[Crossref]

Z. Hu, S. Singha, Y. M. Liu, and R. J. Gordon, “Mechanism for the ablation of Si 〈111〉 with pairs of ultrashort laser pulses,” Appl. Phys. Lett. 90, 131910 (2007).
[Crossref]

Huang, X.

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23, 15047–15056 (2015).
[Crossref] [PubMed]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22, 7686–7693 (2014).
[Crossref] [PubMed]

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

Jiang, L.

Jiang, Y.

A. Chen, Y. Jiang, T. Wang, J. Shao, and M. Jin, “Comparison of plasma temperature and electron density on nanosecond laser ablation of cu and nano-cu,” Phys. Plasmas 22, 033301 (2015).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

Jin, M.

A. Chen, Y. Jiang, T. Wang, J. Shao, and M. Jin, “Comparison of plasma temperature and electron density on nanosecond laser ablation of cu and nano-cu,” Phys. Plasmas 22, 033301 (2015).
[Crossref]

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

Joshi, H. C.

V. Sivakumaran, A. Kumar, R. K. Singh, V. Prahlad, and H. C. Joshi, “Atomic processes in emission characteristics of a lithium plasma plume formed by double-pulse laser ablation,” Plasma Sci. Technol. 15, 204–208 (2013).
[Crossref]

Koral, C.

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85, 10180–10187 (2013).
[Crossref] [PubMed]

Kumar, A.

V. Sivakumaran, A. Kumar, R. K. Singh, V. Prahlad, and H. C. Joshi, “Atomic processes in emission characteristics of a lithium plasma plume formed by double-pulse laser ablation,” Plasma Sci. Technol. 15, 204–208 (2013).
[Crossref]

Kumar, B.

B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20, 053503 (2013).
[Crossref]

Kuršelis, K.

O. Balachninaitė, A. Baškevičius, K. Stankevičiūutė, K. Kuršelis, and V. Sirutkaitis, “Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses,” Lith. J. Phys. 50, 105–110 (2010).
[Crossref]

Laserna, J. J.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85, 640–669 (2013).
[Crossref]

Laville, S.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. Atom. Spectrom. 25, 635–644 (2010).
[Crossref]

Li, K. X.

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
[Crossref]

Li, S.

L. Liu, X. Huang, S. Li, Y. Lu, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Laser-induced breakdown spectroscopy enhanced by a micro torch,” Opt. Express 23, 15047–15056 (2015).
[Crossref] [PubMed]

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, “Flame-enhanced laser-induced breakdown spectroscopy,” Opt. Express 22, 7686–7693 (2014).
[Crossref] [PubMed]

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

Li, X. F.

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
[Crossref]

Li, Z.

Liu, J. M.

Liu, L.

Liu, Y. M.

Z. Hu, S. Singha, Y. M. Liu, and R. J. Gordon, “Mechanism for the ablation of Si 〈111〉 with pairs of ultrashort laser pulses,” Appl. Phys. Lett. 90, 131910 (2007).
[Crossref]

Lu, Y.

Lu, Y. F.

Lucena, P.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85, 640–669 (2013).
[Crossref]

Mao, S. S.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Mao, X.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Martin, P.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[Crossref]

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) (Cambridge U. Press, 2006).
[Crossref]

Moros, J.

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85, 640–669 (2013).
[Crossref]

Mumtaz, M.

H. Shakeel, M. Mumtaz, S. Shahzada, A. Nadeem, and S. U. Haq, “Spectroscopic characterization of laser ablated silicon plasma,” Plasma Sources Sci. T. 23, 035006 (2014).
[Crossref]

Munson, C. A.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[Crossref]

Nadeem, A.

H. Shakeel, M. Mumtaz, S. Shahzada, A. Nadeem, and S. U. Haq, “Spectroscopic characterization of laser ablated silicon plasma,” Plasma Sources Sci. T. 23, 035006 (2014).
[Crossref]

Ni, W. D.

Nicolas, G.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta B 63, 1006–1010 (2008).
[Crossref]

Palleschi, V.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) (Cambridge U. Press, 2006).
[Crossref]

Pandey, P. K.

P. K. Pandey and R. K. Thareja, “Rotating copper plasmoid in external magnetic field,” Phys. Plasmas 20, 022117 (2013).
[Crossref]

Petite, G.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Pinon, V.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta B 63, 1006–1010 (2008).
[Crossref]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance libs sensitivity for trace elements determination in soils,” J. Anal. Atom. Spectrom. 25, 837–848 (2010).
[Crossref]

Prahlad, V.

V. Sivakumaran, A. Kumar, R. K. Singh, V. Prahlad, and H. C. Joshi, “Atomic processes in emission characteristics of a lithium plasma plume formed by double-pulse laser ablation,” Plasma Sci. Technol. 15, 204–208 (2013).
[Crossref]

Pronko, P. P.

P. P. Pronko, Z. Zhang, and P. A. VanRompay, “Critical density effects in femtosecond ablation plasmas and consequences for high intensity pulsed laser deposition,” Appl. Surf. Sci. 208, 492–501 (2003).
[Crossref]

Puerto, D.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Pulhani, A. K.

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15, 546–551 (2013).
[Crossref]

Qi, H.

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

Qi, H. X.

Y. Qi, H. X. Qi, Q. X. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Qi, Y.

Y. Qi, H. X. Qi, Q. X. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

Qian, H. G.

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
[Crossref]

Quere, F.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Rashid, B.

B. Rashid, R. Ahmed, R. Ali, and M. Baig, “A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver,” Phys. Plasmas 18, 073301 (2011).
[Crossref]

Ren, Y. P.

Y. P. Ren, J. K. Chen, and Y. W. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110, 113102 (2011).
[Crossref]

Ren, Z. J.

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
[Crossref]

Rentzepis, P. M.

A. O. Er, J. Chen, J. Tang, and P. M. Rentzepis, “Coherent acoustic wave oscillations and melting on Ag (111) surface by time resolved x-ray diffraction,” Appl. Phys. Lett. 100, 151910 (2012).
[Crossref]

J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” PNAS 108, 18887–18892 (2011).
[Crossref] [PubMed]

Russo, R. E.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Sabsabi, M.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. Atom. Spectrom. 25, 635–644 (2010).
[Crossref]

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental nd : Yag laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[Crossref]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) (Cambridge U. Press, 2006).
[Crossref]

Scott, J. R.

A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
[Crossref] [PubMed]

Shah, M. L.

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15, 546–551 (2013).
[Crossref]

Shahzada, S.

H. Shakeel, M. Mumtaz, S. Shahzada, A. Nadeem, and S. U. Haq, “Spectroscopic characterization of laser ablated silicon plasma,” Plasma Sources Sci. T. 23, 035006 (2014).
[Crossref]

Shakeel, H.

H. Shakeel, M. Mumtaz, S. Shahzada, A. Nadeem, and S. U. Haq, “Spectroscopic characterization of laser ablated silicon plasma,” Plasma Sources Sci. T. 23, 035006 (2014).
[Crossref]

Shao, J.

A. Chen, Y. Jiang, T. Wang, J. Shao, and M. Jin, “Comparison of plasma temperature and electron density on nanosecond laser ablation of cu and nano-cu,” Phys. Plasmas 22, 033301 (2015).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

Siegel, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Silvain, J. F.

Singh, R. K.

V. Sivakumaran, A. Kumar, R. K. Singh, V. Prahlad, and H. C. Joshi, “Atomic processes in emission characteristics of a lithium plasma plume formed by double-pulse laser ablation,” Plasma Sci. Technol. 15, 204–208 (2013).
[Crossref]

Singha, S.

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520 (2008).
[Crossref]

Z. Hu, S. Singha, Y. M. Liu, and R. J. Gordon, “Mechanism for the ablation of Si 〈111〉 with pairs of ultrashort laser pulses,” Appl. Phys. Lett. 90, 131910 (2007).
[Crossref]

Sirutkaitis, V.

O. Balachninaitė, A. Baškevičius, K. Stankevičiūutė, K. Kuršelis, and V. Sirutkaitis, “Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses,” Lith. J. Phys. 50, 105–110 (2010).
[Crossref]

Sivakumaran, V.

V. Sivakumaran, A. Kumar, R. K. Singh, V. Prahlad, and H. C. Joshi, “Atomic processes in emission characteristics of a lithium plasma plume formed by double-pulse laser ablation,” Plasma Sci. Technol. 15, 204–208 (2013).
[Crossref]

Solis, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Stankeviciuute, K.

O. Balachninaitė, A. Baškevičius, K. Stankevičiūutė, K. Kuršelis, and V. Sirutkaitis, “Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses,” Lith. J. Phys. 50, 105–110 (2010).
[Crossref]

St-Onge, L.

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental nd : Yag laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[Crossref]

Su, M. G.

D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, “A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry,” Plasma Sci. Technol. 16, 374–379 (2014).
[Crossref]

Su, X. J.

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
[Crossref]

Sun, D. X.

D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, “A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry,” Plasma Sci. Technol. 16, 374–379 (2014).
[Crossref]

Sun, T.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

Suri, B. M.

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15, 546–551 (2013).
[Crossref]

Tang, J.

A. O. Er, J. Chen, J. Tang, and P. M. Rentzepis, “Coherent acoustic wave oscillations and melting on Ag (111) surface by time resolved x-ray diffraction,” Appl. Phys. Lett. 100, 151910 (2012).
[Crossref]

J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” PNAS 108, 18887–18892 (2011).
[Crossref] [PubMed]

Thareja, R. K.

P. K. Pandey and R. K. Thareja, “Rotating copper plasmoid in external magnetic field,” Phys. Plasmas 20, 022117 (2013).
[Crossref]

B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20, 053503 (2013).
[Crossref]

VanRompay, P. A.

P. P. Pronko, Z. Zhang, and P. A. VanRompay, “Critical density effects in femtosecond ablation plasmas and consequences for high intensity pulsed laser deposition,” Appl. Surf. Sci. 208, 492–501 (2003).
[Crossref]

Vidal, F.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. Atom. Spectrom. 25, 635–644 (2010).
[Crossref]

Wang, M. X.

Wang, Q. X.

Y. Qi, H. X. Qi, Q. X. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Wang, R.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

Wang, T.

A. Chen, Y. Jiang, T. Wang, J. Shao, and M. Jin, “Comparison of plasma temperature and electron density on nanosecond laser ablation of cu and nano-cu,” Phys. Plasmas 22, 033301 (2015).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

Wang, Z.

Wen, G. H.

D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, “A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry,” Plasma Sci. Technol. 16, 374–379 (2014).
[Crossref]

Yu, Y. L.

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
[Crossref]

Zhang, C. F.

Zhang, Y. W.

Y. P. Ren, J. K. Chen, and Y. W. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110, 113102 (2011).
[Crossref]

Zhang, Z.

P. P. Pronko, Z. Zhang, and P. A. VanRompay, “Critical density effects in femtosecond ablation plasmas and consequences for high intensity pulsed laser deposition,” Appl. Surf. Sci. 208, 492–501 (2003).
[Crossref]

Zhou, W. D.

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
[Crossref]

Zhou, Y. S.

Anal. Bioanal. Chem. (1)

A. J. Effenberger and J. R. Scott, “Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3217–3227 (2011).
[Crossref] [PubMed]

Anal. Chem. (2)

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem. 85, 10180–10187 (2013).
[Crossref] [PubMed]

F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalin, and J. J. Laserna, “Laser-induced breakdown spectroscopy,” Anal. Chem. 85, 640–669 (2013).
[Crossref]

Appl. Phys. A (2)

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Appl. Phys. Lett. (3)

A. O. Er, J. Chen, J. Tang, and P. M. Rentzepis, “Coherent acoustic wave oscillations and melting on Ag (111) surface by time resolved x-ray diffraction,” Appl. Phys. Lett. 100, 151910 (2012).
[Crossref]

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Z. Hu, S. Singha, Y. M. Liu, and R. J. Gordon, “Mechanism for the ablation of Si 〈111〉 with pairs of ultrashort laser pulses,” Appl. Phys. Lett. 90, 131910 (2007).
[Crossref]

Appl. Surf. Sci. (1)

P. P. Pronko, Z. Zhang, and P. A. VanRompay, “Critical density effects in femtosecond ablation plasmas and consequences for high intensity pulsed laser deposition,” Appl. Surf. Sci. 208, 492–501 (2003).
[Crossref]

IEEE T. Plasma Sci. (1)

R. Ahmed and M. A. Baig, “On the optimization for enhanced dual-pulse laser-induced breakdown spectroscopy,” IEEE T. Plasma Sci. 38, 2052–2055 (2010).
[Crossref]

J. Anal. Atom. Spectrom. (5)

H. Qi, S. Li, Y. Qi, A. Chen, Z. Hu, X. Huang, M. Jin, and D. Ding, “Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air,” J. Anal. Atom. Spectrom. 29, 1105–1111 (2014).
[Crossref]

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. Atom. Spectrom. 25, 635–644 (2010).
[Crossref]

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “2013 atomic spectrometry update-a review of advances in environmental analysis,” J. Anal. Atom. Spectrom. 29, 17–50 (2014).
[Crossref]

W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, “Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma,” J. Anal. Atom. Spectrom. 28, 702–710 (2013).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance libs sensitivity for trace elements determination in soils,” J. Anal. Atom. Spectrom. 25, 837–848 (2010).
[Crossref]

J. Appl. Phys. (3)

T. Y. Choi and C. P. Grigoropoulos, “Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon,” J. Appl. Phys. 92, 4918–4925 (2002).
[Crossref]

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520 (2008).
[Crossref]

Y. P. Ren, J. K. Chen, and Y. W. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110, 113102 (2011).
[Crossref]

Lith. J. Phys. (1)

O. Balachninaitė, A. Baškevičius, K. Stankevičiūutė, K. Kuršelis, and V. Sirutkaitis, “Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses,” Lith. J. Phys. 50, 105–110 (2010).
[Crossref]

Opt. Commun. (1)

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser,” Opt. Commun. 285, 1895–1899 (2012).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (2)

R. Ahmed and M. A. Baig, “A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy,” Opt. Laser Technol. 65, 113–118 (2015).
[Crossref]

Y. Qi, H. X. Qi, Q. X. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Phys. Plasmas (5)

B. Rashid, R. Ahmed, R. Ali, and M. Baig, “A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver,” Phys. Plasmas 18, 073301 (2011).
[Crossref]

A. Chen, Y. Jiang, T. Wang, J. Shao, and M. Jin, “Comparison of plasma temperature and electron density on nanosecond laser ablation of cu and nano-cu,” Phys. Plasmas 22, 033301 (2015).
[Crossref]

A. Chen, S. Li, S. Li, Y. Jiang, J. Shao, T. Wang, X. Huang, M. Jin, and D. Ding, “Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse,” Phys. Plasmas 20, 103110 (2013).
[Crossref]

P. K. Pandey and R. K. Thareja, “Rotating copper plasmoid in external magnetic field,” Phys. Plasmas 20, 022117 (2013).
[Crossref]

B. Kumar and R. K. Thareja, “Laser ablated copper plasmas in liquid and gas ambient,” Phys. Plasmas 20, 053503 (2013).
[Crossref]

Plasma Sci. Technol. (3)

D. X. Sun, M. G. Su, C. Z. Dong, and G. H. Wen, “A comparative study of the laser induced breakdown spectroscopy in single- and collinear double-pulse laser geometry,” Plasma Sci. Technol. 16, 374–379 (2014).
[Crossref]

V. Sivakumaran, A. Kumar, R. K. Singh, V. Prahlad, and H. C. Joshi, “Atomic processes in emission characteristics of a lithium plasma plume formed by double-pulse laser ablation,” Plasma Sci. Technol. 15, 204–208 (2013).
[Crossref]

M. L. Shah, A. K. Pulhani, B. M. Suri, and G. P. Gupta, “Time-resolved emission spectroscopic study of laser-induced steel plasmas,” Plasma Sci. Technol. 15, 546–551 (2013).
[Crossref]

Plasma Sources Sci. T. (1)

H. Shakeel, M. Mumtaz, S. Shahzada, A. Nadeem, and S. U. Haq, “Spectroscopic characterization of laser ablated silicon plasma,” Plasma Sources Sci. T. 23, 035006 (2014).
[Crossref]

PNAS (1)

J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis, “Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses,” PNAS 108, 18887–18892 (2011).
[Crossref] [PubMed]

Spectrochim. Acta B (5)

P. Diwakar, S. Harilal, J. Freeman, and A. Hassanein, “Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy,” Spectrochim. Acta B 87, 65–73 (2013).
[Crossref]

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, “Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples,” Spectrochim. Acta B 63, 805–816 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta B 63, 1006–1010 (2008).
[Crossref]

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental nd : Yag laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[Crossref]

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
[Crossref]

Other (1)

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (LIBS) (Cambridge U. Press, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic drawing of the apparatus. Components include mirror (M), dichroic mirror (DM), off-axis parabolic mirror (PM), Glan laser polarizer (G), half-wave plate (HWP), and sample (S). (b) Timing diagram.
Fig. 2
Fig. 2 Contour map of spectral intensity with the time separation of the double-pulse laser. The fluence of the femtosecond double-pulse laser is: (a) 4.6 J/cm 2 (2.3 J/cm 2 at 800 nm + 2.3 J/cm 2 at 400 nm), (b) 6.9 J/cm 2 (4.6 J/cm 2 at 800 nm + 2.3 J/cm 2 at 400 nm).
Fig. 3
Fig. 3 Spectral intensity at the time separations of −300 ps, −25 ps, 0 ps, 5 ps, and 300 ps. The laser fluences of the femtosecond double-pulse laser are: (a, c) 4.6 J/cm2 (2.3 J/cm 2 at 800 nm + 2.3 J/cm 2 at 400 nm), (b, d) 6.9 J/cm 2 (4.6 J/cm 2 at 800 nm + 2.3 J/cm 2 at 400 nm).
Fig. 4
Fig. 4 (a) Spectral intensity vs. the time separation for femtosecond double-pulse laser; (b) enhancement ratio vs. the time separation for femtosecond double-pulse laser. The laser fluences of the femtosecond double-pulse laser are 4.6 J/cm 2 (2.3 J/cm 2 at 800 nm + 2.3 J/cm 2 at 400 nm), and 6.9 J/cm 2 (4.6 J/cm 2 at 800 nm + 2.3 J/cm 2 at 400 nm).

Metrics