Abstract

A novel mode multiplexer and demultiplexer (MMUX/DEMMUX) based on 2-D photonic crystal (PC) at 1550 nm is proposed. The PC-based mode MMUX/DEMMUX including mode conversion function with a single-mode and multi-mode waveguides can be realized by quasi phase-matching TE0 & TE1 modes of two waveguides. 2D Finite-Difference-Time-Domain and beam propagation methods are used for simulation. The results show that PC-based mode MMUX/DEMMUX has the potential for high-capacity MDM optical communication systems with a low insertion loss (<0.36dB), low mode crosstalk (< −20.9 dB) and wide bandwidth (~100 nm).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and analysis of a grating assisted hybrid mode and polarization division (de)multiplexer

Manoranjan Minz and Ramesh Kumar Sonkar
Appl. Opt. 59(3) 785-794 (2020)

On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer

Yunhong Ding, Jing Xu, Francesco Da Ros, Bo Huang, Haiyan Ou, and Christophe Peucheret
Opt. Express 21(8) 10376-10382 (2013)

Silicon mode multi/demultiplexer based on multimode grating-assisted couplers

Huiye Qiu, Hui Yu, Ting Hu, Guomin Jiang, Haifeng Shao, Ping Yu, Jianyi Yang, and Xiaoqing Jiang
Opt. Express 21(15) 17904-17911 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technol. Lett. 18(1), 226–228 (2006).
    [Crossref]
  2. K. Nozaki, E. Kuramochi, A. Shinya, and M. Notomi, “25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities,” Opt. Express 22(12), 14263–14274 (2014).
    [Crossref] [PubMed]
  3. C. Han, Y. B. Yue, S. M. Zhao, C. M. Chen, and D. M. Zhang, “Design and fabrication of 650nm arrayed waveguides grating,” Acta Optica Sin. 33(3), 0323002 (2013).
  4. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
    [Crossref]
  5. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguidesand a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [Crossref]
  6. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Asymmetric parallel waveguide with mode conversion for mode and wavelength division multiplexing transmission,”in Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2012 OFC/NFOEC OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.4.
    [Crossref]
  7. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, T. Uematsu, and F. Yamamoto, “PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip,” J. Lightwave Technol. 33(6), 1161–1165 (2015).
    [Crossref]
  8. N. Hanzawa, K. Saitoh, T. Sakamoto, K. Tsujikawa, T. Uematsu, M. Koshiba, and F. Yamamoto, “Three-mode PLC-type multi/demultiplexer for mode-division multiplexing transmission,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
    [Crossref]
  9. L. W. Luo, L. H. Gabrielli, and M. Lipson, “On-Chip Mode-Division Multiplexer,” in Conference on Lasers and Electro-Optics, CLEO:2013 OSA Technical Digest (Optical Society of America, 2013), paper CTh1C.6.
  10. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood., “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  11. C. P. Chen, J. B. Driscoll, R. R. Grote, Y. Liu, R. M. Osgood, and K. Bergman, “60-Gb/s Mode Division Multiplexing and Wavelength Division Multiplexing in Si Multimode Waveguides,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
    [Crossref]
  12. J. B. Driscoll, R. R. Grote, B. Souhan, Y. Liu, J. I. Dadap, and R. M. Osgood, Jr., “Silicon Multiplexers/Demultiplexers for On-Chip Mode Divis.on Multiplexing Based On Asymmetric Y-Junctions,” in Frontiers in Optics Conference, Frontiers in Optics 2013/Laser Science OSA Technical Digest (Optical Society of America, 2013), paper FM3E.4.
  13. C. P. Tsekrekos and D. Syvridis, “All-Fiber Broadband LP02 Mode Converter for Future Wavelength and Mode Division Multiplexing Systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
    [Crossref]
  14. C. P. Tsekrekos and D. Syvridis, “Broadband All-Fiber mode multiplexer for future MDM-WDM tramission over few-mode fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and International Quantum Electronics (IEEE, 2013), pp. 1.
  15. C. P. Tsekrekos and D. Syvridis, “Symmetric few-mode fiber couplers as the key component for broadband mode multiplexing,” J. Lightwave Technol. 32(14), 2461–2467 (2014).
    [Crossref]
  16. A. Yariv, Optical Electronics in Modern Communications 5th ed. (Oxford U. Press, 1997).
  17. Y. D. Yang, Y. Li, Y. Z. Huang, and A. W. Poon, “Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators,” Opt. Express 22(18), 22172–22183 (2014).
    [Crossref] [PubMed]
  18. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  19. B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
    [Crossref] [PubMed]
  20. E. H. Khoo, A. Q. Liu, J. H. Wu, J. Li, and D. Pinjala, “Modified step-theory for investigating mode coupling mechanism in photonic crystal waveguide taper,” Opt. Express 14(13), 6035–6054 (2006).
    [Crossref] [PubMed]
  21. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett. 26(14), 1102–1104 (2001).
    [Crossref] [PubMed]
  22. J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90(26), 261111 (2007).
    [Crossref]
  23. D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
    [Crossref]
  24. M. Mashayekhi, W. J. Wang, and S. Iraj Najafi, “Semiconductor device to optical fiber coupling using low loss glass taper waveguide,” Opt. Eng. 36(12), 3476–3477 (1997).
    [Crossref]
  25. S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer Academic Publishers, 2003).
  26. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  27. S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE International Conference on Group IV Photonic (IEEE, 2009), pp. 166–168.
    [Crossref]
  28. W. Ogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photonics Technol. Lett. 13(6), 565–567 (2001).
    [Crossref]
  29. R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G.-H. Duan, “Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,” Appl. Phys. Lett. 82(7), 1009–1011 (2003).
    [Crossref]
  30. R. Kappeler, P. Kaspar, and H. Jäckel, “Loss-relevant structural imperfections in substrate-type photonic crystal waveguides,” J. Lightwave Technol. 29(21), 3156–3166 (2011).
    [Crossref]
  31. F. J. Blanco-Rodríguez, F. R. Villatoro, and J. I. Ramos, “Numerical analysis of the effect of small geometrical imperfections on photonic crystal wires,” Appl. Math. Comput. 218(10), 5989–5993 (2012).
    [Crossref]

2015 (1)

2014 (4)

2013 (3)

2012 (3)

C. P. Tsekrekos and D. Syvridis, “All-Fiber Broadband LP02 Mode Converter for Future Wavelength and Mode Division Multiplexing Systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
[Crossref]

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguidesand a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
[Crossref]

F. J. Blanco-Rodríguez, F. R. Villatoro, and J. I. Ramos, “Numerical analysis of the effect of small geometrical imperfections on photonic crystal wires,” Appl. Math. Comput. 218(10), 5989–5993 (2012).
[Crossref]

2011 (1)

2008 (1)

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[Crossref]

2007 (1)

J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90(26), 261111 (2007).
[Crossref]

2006 (2)

E. H. Khoo, A. Q. Liu, J. H. Wu, J. Li, and D. Pinjala, “Modified step-theory for investigating mode coupling mechanism in photonic crystal waveguide taper,” Opt. Express 14(13), 6035–6054 (2006).
[Crossref] [PubMed]

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technol. Lett. 18(1), 226–228 (2006).
[Crossref]

2003 (1)

R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G.-H. Duan, “Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,” Appl. Phys. Lett. 82(7), 1009–1011 (2003).
[Crossref]

2002 (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

2001 (2)

W. Ogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photonics Technol. Lett. 13(6), 565–567 (2001).
[Crossref]

T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett. 26(14), 1102–1104 (2001).
[Crossref] [PubMed]

1997 (1)

M. Mashayekhi, W. J. Wang, and S. Iraj Najafi, “Semiconductor device to optical fiber coupling using low loss glass taper waveguide,” Opt. Eng. 36(12), 3476–3477 (1997).
[Crossref]

Baets, R.

W. Ogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photonics Technol. Lett. 13(6), 565–567 (2001).
[Crossref]

Bagheri, S.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE International Conference on Group IV Photonic (IEEE, 2009), pp. 166–168.
[Crossref]

Bauer, J.

J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90(26), 261111 (2007).
[Crossref]

Bergman, K.

C. P. Chen, J. B. Driscoll, R. R. Grote, Y. Liu, R. M. Osgood, and K. Bergman, “60-Gb/s Mode Division Multiplexing and Wavelength Division Multiplexing in Si Multimode Waveguides,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Bernier, D.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[Crossref]

Bienstman, P.

W. Ogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photonics Technol. Lett. 13(6), 565–567 (2001).
[Crossref]

Blanco-Rodríguez, F. J.

F. J. Blanco-Rodríguez, F. R. Villatoro, and J. I. Ramos, “Numerical analysis of the effect of small geometrical imperfections on photonic crystal wires,” Appl. Math. Comput. 218(10), 5989–5993 (2012).
[Crossref]

Borel, P. I.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technol. Lett. 18(1), 226–228 (2006).
[Crossref]

Cassan, E.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[Crossref]

Chen, C. M.

C. Han, Y. B. Yue, S. M. Zhao, C. M. Chen, and D. M. Zhang, “Design and fabrication of 650nm arrayed waveguides grating,” Acta Optica Sin. 33(3), 0323002 (2013).

Chen, C. P.

C. P. Chen, J. B. Driscoll, R. R. Grote, Y. Liu, R. M. Osgood, and K. Bergman, “60-Gb/s Mode Division Multiplexing and Wavelength Division Multiplexing in Si Multimode Waveguides,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Da Ros, F.

Dadap, J. I.

De Zutter, D.

W. Ogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photonics Technol. Lett. 13(6), 565–567 (2001).
[Crossref]

Ding, Y.

Dorin, B. A.

Driscoll, J. B.

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood., “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
[Crossref] [PubMed]

C. P. Chen, J. B. Driscoll, R. R. Grote, Y. Liu, R. M. Osgood, and K. Bergman, “60-Gb/s Mode Division Multiplexing and Wavelength Division Multiplexing in Si Multimode Waveguides,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Duan, G.-H.

R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G.-H. Duan, “Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,” Appl. Phys. Lett. 82(7), 1009–1011 (2003).
[Crossref]

Ferrini, R.

R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G.-H. Duan, “Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,” Appl. Phys. Lett. 82(7), 1009–1011 (2003).
[Crossref]

Forchel, A.

Frandsen, L. H.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technol. Lett. 18(1), 226–228 (2006).
[Crossref]

Green, W. M. J.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE International Conference on Group IV Photonic (IEEE, 2009), pp. 166–168.
[Crossref]

Grote, R. R.

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood., “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
[Crossref] [PubMed]

C. P. Chen, J. B. Driscoll, R. R. Grote, Y. Liu, R. M. Osgood, and K. Bergman, “60-Gb/s Mode Division Multiplexing and Wavelength Division Multiplexing in Si Multimode Waveguides,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Han, C.

C. Han, Y. B. Yue, S. M. Zhao, C. M. Chen, and D. M. Zhang, “Design and fabrication of 650nm arrayed waveguides grating,” Acta Optica Sin. 33(3), 0323002 (2013).

Hanzawa, N.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, T. Uematsu, and F. Yamamoto, “PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip,” J. Lightwave Technol. 33(6), 1161–1165 (2015).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, K. Tsujikawa, T. Uematsu, M. Koshiba, and F. Yamamoto, “Three-mode PLC-type multi/demultiplexer for mode-division multiplexing transmission,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Happ, T. D.

Harpoth, A.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technol. Lett. 18(1), 226–228 (2006).
[Crossref]

Hede, K. K.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technol. Lett. 18(1), 226–228 (2006).
[Crossref]

Houdre, R.

R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G.-H. Duan, “Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,” Appl. Phys. Lett. 82(7), 1009–1011 (2003).
[Crossref]

Huang, B.

Huang, Y. Z.

Iraj Najafi, S.

M. Mashayekhi, W. J. Wang, and S. Iraj Najafi, “Semiconductor device to optical fiber coupling using low loss glass taper waveguide,” Opt. Eng. 36(12), 3476–3477 (1997).
[Crossref]

Ishizaka, Y.

Jäckel, H.

John, S.

J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90(26), 261111 (2007).
[Crossref]

Kamp, M.

Kappeler, R.

Kaspar, P.

Kawaguchi, Y.

Khoo, E. H.

Koshiba, M.

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguidesand a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, K. Tsujikawa, T. Uematsu, M. Koshiba, and F. Yamamoto, “Three-mode PLC-type multi/demultiplexer for mode-division multiplexing transmission,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Kristensen, M.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technol. Lett. 18(1), 226–228 (2006).
[Crossref]

Kuramochi, E.

Li, J.

Li, Y.

Liu, A. Q.

Liu, Y.

C. P. Chen, J. B. Driscoll, R. R. Grote, Y. Liu, R. M. Osgood, and K. Bergman, “60-Gb/s Mode Division Multiplexing and Wavelength Division Multiplexing in Si Multimode Waveguides,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Lombardet, B.

R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G.-H. Duan, “Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,” Appl. Phys. Lett. 82(7), 1009–1011 (2003).
[Crossref]

Lu, M.

Maire, G.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[Crossref]

Marris-Morini, D.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[Crossref]

Mashayekhi, M.

M. Mashayekhi, W. J. Wang, and S. Iraj Najafi, “Semiconductor device to optical fiber coupling using low loss glass taper waveguide,” Opt. Eng. 36(12), 3476–3477 (1997).
[Crossref]

Matsui, T.

Niemi, T.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technol. Lett. 18(1), 226–228 (2006).
[Crossref]

Notomi, M.

Nozaki, K.

Ogaerts, W.

W. Ogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photonics Technol. Lett. 13(6), 565–567 (2001).
[Crossref]

Osgood, R. M.

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood., “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
[Crossref] [PubMed]

C. P. Chen, J. B. Driscoll, R. R. Grote, Y. Liu, R. M. Osgood, and K. Bergman, “60-Gb/s Mode Division Multiplexing and Wavelength Division Multiplexing in Si Multimode Waveguides,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Ou, H.

Peucheret, C.

Pinjala, D.

Poon, A. W.

Ramos, J. I.

F. J. Blanco-Rodríguez, F. R. Villatoro, and J. I. Ramos, “Numerical analysis of the effect of small geometrical imperfections on photonic crystal wires,” Appl. Math. Comput. 218(10), 5989–5993 (2012).
[Crossref]

Saitoh, K.

Sakamoto, T.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, T. Uematsu, and F. Yamamoto, “PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip,” J. Lightwave Technol. 33(6), 1161–1165 (2015).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, K. Tsujikawa, T. Uematsu, M. Koshiba, and F. Yamamoto, “Three-mode PLC-type multi/demultiplexer for mode-division multiplexing transmission,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Shinya, A.

Souhan, B.

Syvridis, D.

C. P. Tsekrekos and D. Syvridis, “Symmetric few-mode fiber couplers as the key component for broadband mode multiplexing,” J. Lightwave Technol. 32(14), 2461–2467 (2014).
[Crossref]

C. P. Tsekrekos and D. Syvridis, “All-Fiber Broadband LP02 Mode Converter for Future Wavelength and Mode Division Multiplexing Systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
[Crossref]

C. P. Tsekrekos and D. Syvridis, “Broadband All-Fiber mode multiplexer for future MDM-WDM tramission over few-mode fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and International Quantum Electronics (IEEE, 2013), pp. 1.

Taillaert, D.

W. Ogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photonics Technol. Lett. 13(6), 565–567 (2001).
[Crossref]

Tsekrekos, C. P.

C. P. Tsekrekos and D. Syvridis, “Symmetric few-mode fiber couplers as the key component for broadband mode multiplexing,” J. Lightwave Technol. 32(14), 2461–2467 (2014).
[Crossref]

C. P. Tsekrekos and D. Syvridis, “All-Fiber Broadband LP02 Mode Converter for Future Wavelength and Mode Division Multiplexing Systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
[Crossref]

C. P. Tsekrekos and D. Syvridis, “Broadband All-Fiber mode multiplexer for future MDM-WDM tramission over few-mode fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and International Quantum Electronics (IEEE, 2013), pp. 1.

Tsujikawa, K.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, T. Uematsu, and F. Yamamoto, “PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip,” J. Lightwave Technol. 33(6), 1161–1165 (2015).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, K. Tsujikawa, T. Uematsu, M. Koshiba, and F. Yamamoto, “Three-mode PLC-type multi/demultiplexer for mode-division multiplexing transmission,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Uematsu, T.

Villatoro, F. R.

F. J. Blanco-Rodríguez, F. R. Villatoro, and J. I. Ramos, “Numerical analysis of the effect of small geometrical imperfections on photonic crystal wires,” Appl. Math. Comput. 218(10), 5989–5993 (2012).
[Crossref]

Vivien, L.

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[Crossref]

Wang, W. J.

M. Mashayekhi, W. J. Wang, and S. Iraj Najafi, “Semiconductor device to optical fiber coupling using low loss glass taper waveguide,” Opt. Eng. 36(12), 3476–3477 (1997).
[Crossref]

Wild, B.

R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G.-H. Duan, “Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,” Appl. Phys. Lett. 82(7), 1009–1011 (2003).
[Crossref]

Wu, J. H.

Xu, J.

Yamamoto, F.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, T. Uematsu, and F. Yamamoto, “PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip,” J. Lightwave Technol. 33(6), 1161–1165 (2015).
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, K. Tsujikawa, T. Uematsu, M. Koshiba, and F. Yamamoto, “Three-mode PLC-type multi/demultiplexer for mode-division multiplexing transmission,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

Yang, Y. D.

Ye, W. N.

Yue, Y. B.

C. Han, Y. B. Yue, S. M. Zhao, C. M. Chen, and D. M. Zhang, “Design and fabrication of 650nm arrayed waveguides grating,” Acta Optica Sin. 33(3), 0323002 (2013).

Zhang, D. M.

C. Han, Y. B. Yue, S. M. Zhao, C. M. Chen, and D. M. Zhang, “Design and fabrication of 650nm arrayed waveguides grating,” Acta Optica Sin. 33(3), 0323002 (2013).

Zhao, S. M.

C. Han, Y. B. Yue, S. M. Zhao, C. M. Chen, and D. M. Zhang, “Design and fabrication of 650nm arrayed waveguides grating,” Acta Optica Sin. 33(3), 0323002 (2013).

Acta Optica Sin. (1)

C. Han, Y. B. Yue, S. M. Zhao, C. M. Chen, and D. M. Zhang, “Design and fabrication of 650nm arrayed waveguides grating,” Acta Optica Sin. 33(3), 0323002 (2013).

Appl. Math. Comput. (1)

F. J. Blanco-Rodríguez, F. R. Villatoro, and J. I. Ramos, “Numerical analysis of the effect of small geometrical imperfections on photonic crystal wires,” Appl. Math. Comput. 218(10), 5989–5993 (2012).
[Crossref]

Appl. Phys. Lett. (2)

R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G.-H. Duan, “Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,” Appl. Phys. Lett. 82(7), 1009–1011 (2003).
[Crossref]

J. Bauer and S. John, “Molding light flow from photonic band gap circuits to microstructured fibers,” Appl. Phys. Lett. 90(26), 261111 (2007).
[Crossref]

Electron. Lett. (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (3)

C. P. Tsekrekos and D. Syvridis, “All-Fiber Broadband LP02 Mode Converter for Future Wavelength and Mode Division Multiplexing Systems,” IEEE Photonics Technol. Lett. 24(18), 1638–1641 (2012).
[Crossref]

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technol. Lett. 18(1), 226–228 (2006).
[Crossref]

W. Ogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photonics Technol. Lett. 13(6), 565–567 (2001).
[Crossref]

J. Lightwave Technol. (4)

Opt. Eng. (2)

D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008).
[Crossref]

M. Mashayekhi, W. J. Wang, and S. Iraj Najafi, “Semiconductor device to optical fiber coupling using low loss glass taper waveguide,” Opt. Eng. 36(12), 3476–3477 (1997).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Other (10)

C. P. Tsekrekos and D. Syvridis, “Broadband All-Fiber mode multiplexer for future MDM-WDM tramission over few-mode fiber,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe and International Quantum Electronics (IEEE, 2013), pp. 1.

A. Yariv, Optical Electronics in Modern Communications 5th ed. (Oxford U. Press, 1997).

S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer Academic Publishers, 2003).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE International Conference on Group IV Photonic (IEEE, 2009), pp. 166–168.
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Asymmetric parallel waveguide with mode conversion for mode and wavelength division multiplexing transmission,”in Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2012 OFC/NFOEC OSA Technical Digest (Optical Society of America, 2012), paper OTu1I.4.
[Crossref]

N. Hanzawa, K. Saitoh, T. Sakamoto, K. Tsujikawa, T. Uematsu, M. Koshiba, and F. Yamamoto, “Three-mode PLC-type multi/demultiplexer for mode-division multiplexing transmission,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

L. W. Luo, L. H. Gabrielli, and M. Lipson, “On-Chip Mode-Division Multiplexer,” in Conference on Lasers and Electro-Optics, CLEO:2013 OSA Technical Digest (Optical Society of America, 2013), paper CTh1C.6.

C. P. Chen, J. B. Driscoll, R. R. Grote, Y. Liu, R. M. Osgood, and K. Bergman, “60-Gb/s Mode Division Multiplexing and Wavelength Division Multiplexing in Si Multimode Waveguides,” in Proceedings of IEEE Conference on Optical Communication (IEEE, 2013), pp. 1–3.
[Crossref]

J. B. Driscoll, R. R. Grote, B. Souhan, Y. Liu, J. I. Dadap, and R. M. Osgood, Jr., “Silicon Multiplexers/Demultiplexers for On-Chip Mode Divis.on Multiplexing Based On Asymmetric Y-Junctions,” in Frontiers in Optics Conference, Frontiers in Optics 2013/Laser Science OSA Technical Digest (Optical Society of America, 2013), paper FM3E.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Cross section of PC complete structure; (b) the TE band structure for PC complete structure; Cross section of the coupling way between SMW and MMW (c) step-width waveguide ;(d) taper waveguide.When a beam of 1.55μm TE0 light is incident at the port of SMW, (e) the steady intensity distribution in step-width waveguide; (f) the steady intensity distribution in taper waveguide; (g) the time domain steady state of transmission light in step-width and taper waveguide respectively.
Fig. 2
Fig. 2 Schematic configuration of the proposed two-mode MMUX/DEMMUX.
Fig. 3
Fig. 3 (a) APW structure and the corresponding mode dispersion curve; (b) the steady field intensity distribution for mode conversion in the APW Region
Fig. 4
Fig. 4 Electrical field transition from each input port for MMUX/DEMMUX
Fig. 5
Fig. 5 For TE0&TE0 MMUX (a) transmittance T1-3; (b) crosstalk intensity S1-3; (c) mode field intensity distribution. For TE0&TE1 MMUX (d) transmittance T2-3; (e) crosstalk intensity S2-3; (f) mode field intensity distribution. For TE0&TE0 DEMMUX (g) transmittance T3-1; (h) crosstalk intensity S3-1; (i) mode field intensity distribution. For TE0&TE1 DEMMUX (j) transmittance T3-2; (k) crosstalk intensity S3-2; (l) mode field intensity distribution.
Fig. 6
Fig. 6 (a) Wavelength dependence of mode insert loss. The black and red curves represent I 1 M M U X and I 2 M M U X for TE0&TE0 and TE0&TE1 MMUX respectively. The blue and gray curves show I 1 D E M M U X and I 2 D E M M U X for TE0&TE0 and TE1&TE0 DEMMUX respectively. (b) Wavelength dependence of mode crosstalk. The black and red curves represent C 1 M M U X and C 2 M M U X for TE0&TE0 and TE0&TE1 MMUX respectively. The blue and gray curves show C 1 D E M M U X and C 2 D E M M U X for TE0&TE0 and TE1&TE0 DEMMUX respectively.
Fig. 7
Fig. 7 (a) The fabrication imperfections existed in taper waveguide (Region 1), SMW (Region 2) and MMW (Region 3). (b) The radius imperfections and dislocations existed in 3 regions. The blue, red and green circles respect the radius imperfections and the number n of Si pillars with a radius imperfection is 1, 2, 3 respectively. All the arrows (blue, red and green) show dislocations caused by the movement of a row of Si pillars with fixed correct size along z + and z- direction.
Fig. 8
Fig. 8 The radius discrepancy dependence of (a) I 1 M M U X (black symbols) and I 2 M M U X (blue symbols) in Region 1. (b) C 1 M M U X (black symbols) and C 2 M M U X (blue symbols) in Region 1. (c) I 1 M M U X (black symbols) and I 2 M M U X (red symbols) in Region 2. (d) C 1 M M U X (black symbols) and C 2 M M U X (red symbols) in Region 2. (e) I 1 M M U X (black symbols) and I 2 M M U X (green symbols) in Region 3. (f) C 1 M M U X (black symbols)and C 2 M M U X (green symbols) in Region 3.
Fig. 9
Fig. 9 The dislocation dependence of (a) I 1 M M U X and I 2 M M U X in Region 1. (b) C 1 M M U X and C 2 M M U X in Region 1. (c) I 1 M M U X and I 2 M M U X in Region 2. (d) C 1 M M U X and C 2 M M U X in Region 2. (e) I 1 M M U X and I 2 M M U X in Region 3. (f) C 1 M M U X and C 2 M M U X in Region 3.

Tables (1)

Tables Icon

Table 1 Waveguide parameters for an asymmetric parallel waveguide

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I 1 M M U X = 10 lg 1 T 1 3
I 2 M M U X = 10 log 1 T 2 3
I 1 D E M M U X = 10 log 1 T 3 1
I 2 D E M M U X = 10 log 1 T 3 2
C 1 M M U X = 10 lg S 2 3 T 1 3
C 2 M M U X = 10 lg S 1 3 T 2 3
C 1 D E M M U X = 10 lg S 3 2 T 3 1
C 2 D E M M U X = 10 lg S 3 1 T 3 2

Metrics