Abstract

An astonishing λ/20 height control is accomplished in 2.5D photopolymerized structures by taking advantage of the induced expansion of the resin. Our nanofabrication method is a one-pot approach with two processing steps: (i) regular 2.5D photopolymerization of the resin monomer by using multiphoton direct laser writing (DLW) lithography and (ii) spatially-selective irradiation of the photopolymerized features before development resulting in a nanometer-controlled height increase of the structure. The UV-visible-NIR sub-wavelength axial feature size (~40 nm) of this method allows fabricating devices with applications in multiple technological fields such as nanoelectronics and photonics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of nanostructures fabricated with two-beam DLW lithography using STED microscopy

Marjukka Elmeranta, Giuseppe Vicidomini, Martí Duocastella, Alberto Diaspro, and Gustavo de Miguel
Opt. Mater. Express 6(10) 3169-3179 (2016)

120 nm resolution and 55 nm structure size in STED-lithography

Richard Wollhofen, Julia Katzmann, Calin Hrelescu, Jaroslaw Jacak, and Thomas A. Klar
Opt. Express 21(9) 10831-10840 (2013)

SiO2-based nonplanar structures fabricated using femtosecond laser lithography

Hiroaki Nishiyama, Mizue Mizoshiri, Toshio Kawahara, Junji Nishii, and Yoshinori Hirata
Opt. Express 16(22) 17288-17294 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
    [Crossref] [PubMed]
  2. H.-D. Yu, M. D. Regulacio, E. Ye, and M.-Y. Han, “Chemical routes to top-down nanofabrication,” Chem. Soc. Rev. 42(14), 6006–6018 (2013).
    [Crossref] [PubMed]
  3. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
    [Crossref] [PubMed]
  4. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [Crossref] [PubMed]
  5. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
    [Crossref] [PubMed]
  6. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [Crossref]
  7. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
    [Crossref]
  8. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
    [Crossref] [PubMed]
  9. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
    [Crossref] [PubMed]
  10. S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
    [Crossref]
  11. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
    [Crossref] [PubMed]
  12. B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
    [Crossref] [PubMed]
  13. J. W. Goodman, Introduction to Fourier Optics (Roberts and Co. Publishers, 2005).
  14. T. Meunier, A. B. Villafranca, R. Bhardwaj, and A. Weck, “Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses,” Opt. Lett. 37(20), 4266–4268 (2012).
    [Crossref] [PubMed]
  15. D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc. 229(3), 540–544 (2008).
    [Crossref] [PubMed]
  16. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [Crossref] [PubMed]
  17. J. Shao, Y. Ding, H. Zhai, B. Hu, X. Li, and H. Tian, “Fabrication of large curvature microlens array using confined laser swelling method,” Opt. Lett. 38(16), 3044–3046 (2013).
    [Crossref] [PubMed]
  18. J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
    [Crossref] [PubMed]
  19. M. Born and E. Wolf, Principles of Optics (Cambridge U., 2003).
  20. http://www.lookchem.com/Pentaerythritol-triacrylate/

2013 (6)

H.-D. Yu, M. D. Regulacio, E. Ye, and M.-Y. Han, “Chemical routes to top-down nanofabrication,” Chem. Soc. Rev. 42(14), 6006–6018 (2013).
[Crossref] [PubMed]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
[Crossref] [PubMed]

J. Shao, Y. Ding, H. Zhai, B. Hu, X. Li, and H. Tian, “Fabrication of large curvature microlens array using confined laser swelling method,” Opt. Lett. 38(16), 3044–3046 (2013).
[Crossref] [PubMed]

2012 (3)

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

T. Meunier, A. B. Villafranca, R. Bhardwaj, and A. Weck, “Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses,” Opt. Lett. 37(20), 4266–4268 (2012).
[Crossref] [PubMed]

2010 (1)

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

2009 (1)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

2008 (3)

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc. 229(3), 540–544 (2008).
[Crossref] [PubMed]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

2007 (1)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

2005 (2)

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[Crossref] [PubMed]

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Aubry, A.

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

Baldacchini, T.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Bhardwaj, R.

Brandi, F.

B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
[Crossref] [PubMed]

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Costantino, S.

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc. 229(3), 540–544 (2008).
[Crossref] [PubMed]

Dallari, W.

B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
[Crossref] [PubMed]

Diaspro, A.

B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
[Crossref] [PubMed]

Ding, Y.

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Fazzi, D.

B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
[Crossref] [PubMed]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Gates, B. D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[Crossref] [PubMed]

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Grancini, G.

B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
[Crossref] [PubMed]

Gu, M.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Han, M.-Y.

H.-D. Yu, M. D. Regulacio, E. Ye, and M.-Y. Han, “Chemical routes to top-down nanofabrication,” Chem. Soc. Rev. 42(14), 6006–6018 (2013).
[Crossref] [PubMed]

Harke, B.

B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
[Crossref] [PubMed]

Hu, B.

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Jokerst, N. M.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Juodkazis, S.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Kunik, D.

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc. 229(3), 540–544 (2008).
[Crossref] [PubMed]

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Larouche, S.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Li, X.

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Ludueña, S. J.

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc. 229(3), 540–544 (2008).
[Crossref] [PubMed]

Maier, S. A.

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

Malinauskas, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Martínez, O. E.

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc. 229(3), 540–544 (2008).
[Crossref] [PubMed]

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Meunier, T.

Misawa, H.

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Miwa, M.

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

Petrozza, A.

B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
[Crossref] [PubMed]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Regulacio, M. D.

H.-D. Yu, M. D. Regulacio, E. Ye, and M.-Y. Han, “Chemical routes to top-down nanofabrication,” Chem. Soc. Rev. 42(14), 6006–6018 (2013).
[Crossref] [PubMed]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Ryan, D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[Crossref] [PubMed]

Seet, K.

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Shao, J.

Smith, D. R.

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Stewart, M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[Crossref] [PubMed]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Tian, H.

Tsai, Y.-J.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Tyler, T.

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

Villafranca, A. B.

von Freymann, G.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Weck, A.

Wegener, M.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Whitesides, G. M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[Crossref] [PubMed]

Willson, C. G.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[Crossref] [PubMed]

Xu, Q.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[Crossref] [PubMed]

Ye, E.

H.-D. Yu, M. D. Regulacio, E. Ye, and M.-Y. Han, “Chemical routes to top-down nanofabrication,” Chem. Soc. Rev. 42(14), 6006–6018 (2013).
[Crossref] [PubMed]

Yu, H.-D.

H.-D. Yu, M. D. Regulacio, E. Ye, and M.-Y. Han, “Chemical routes to top-down nanofabrication,” Chem. Soc. Rev. 42(14), 6006–6018 (2013).
[Crossref] [PubMed]

Zhai, H.

Adv. Mater. (2)

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

B. Harke, W. Dallari, G. Grancini, D. Fazzi, F. Brandi, A. Petrozza, and A. Diaspro, “Polymerization Inhibition by Triplet State Absorption for Nanoscale Lithography,” Adv. Mater. 25(6), 904–909 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[Crossref] [PubMed]

Chem. Rev. (1)

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

H.-D. Yu, M. D. Regulacio, E. Ye, and M.-Y. Han, “Chemical routes to top-down nanofabrication,” Chem. Soc. Rev. 42(14), 6006–6018 (2013).
[Crossref] [PubMed]

J. Microsc. (1)

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc. 229(3), 540–544 (2008).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Nanotechnology (1)

S. Juodkazis, V. Mizeikis, K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Nat. Commun. (1)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11(5), 450–454 (2012).
[Crossref] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Science (2)

J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337(6094), 549–552 (2012).
[Crossref] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Other (3)

J. W. Goodman, Introduction to Fourier Optics (Roberts and Co. Publishers, 2005).

M. Born and E. Wolf, Principles of Optics (Cambridge U., 2003).

http://www.lookchem.com/Pentaerythritol-triacrylate/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A) Schematic illustrations showing the two processing steps involved in the one-pot fabrication method to precisely control the height of the resin structures. B) Non-contact AFM image (height) of a square (15x15 μm) fabricated with two-photon lithography (100 mW) with subsequent irradiation with the same femtosecond laser at lower power (60 mW, two exposures) to generate a central elevated small square (5x5 μm). The inset shows a zoom of the elevated area with a fine detail of the line-by-line fabrication process. The image size is 20 x 20 μm. C) Height profiles along the white line drawn in panel B. D) Height of different central elevated squares obtained upon irradiation with the femtosecond laser in a photopolymerized square with an increasing number of exposure at five different powers (25, 36, 50, 60 and 76 mW).
Fig. 2
Fig. 2 AFM indentation measurements on a photopolymerized structure fabricated by our one-pot method. (A) Topography map of the structure, where the area irradiated twice corresponds to the right side of the dotted line. Heights were measured with respect to the area irradiated only once (left). (B) Corresponding colormap of the Young’s modulus of the structure shown in (A). The image field of view corresponds to 5.2 µm x 5.2 µm
Fig. 3
Fig. 3 Non-contact AFM images (height) of three patterns fabricated by expansion of a photopolymerized square with the femtosecond laser: (A) separated square pattern, (B) chessboard-like pattern and (C) pyramidal pattern. Height profiles (D, E and F) along the white lines drawn in panel A, B and C, respectively. The image size is 30x30 μm for image A and B and 20x20 μm for image C.
Fig. 4
Fig. 4 A) Non-contact AFM images (height) of the chessboard-like pattern fabricated for the holography experiments. The image size is 70 x 70 μm. Height profiles of the sample with no further irradiation (blue line) and with femtosecond irradiation (red line) of the photopolymerized squares with 50 mW (one exposure). B) and C) Experimental and simulated diffraction signal of the chessboard-like patterns upon irradiation with λ = 488 nm.
Fig. 5
Fig. 5 Plot of the expected change in refractive index as a function of the variation in density for PETA.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n = 2 f ( ρ ) + 1 1 f ( ρ ) ,
f = ρ A W ,

Metrics