Abstract

Photonic crystal microcavity biosensors can detect single biomolecules, but reliance on diffusion from microfluidic flow for particle delivery limits the minimum detectable particle concentration. Here the particle equation of motion is solved to find the sensitivity enhancement due to optical forces. The enhancement is examined for a range of parameters, including input optical power, fluid flow rate, device quality factor, and particle size.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Systematic analysis of optical gradient force in photonic crystal nanobeam cavities

Shoubao Han and Yaocheng Shi
Opt. Express 24(1) 452-458 (2016)

Sensitivity enhancement in photonic crystal slab biosensors

Mohamed El Beheiry, Victor Liu, Shanhui Fan, and Ofer Levi
Opt. Express 18(22) 22702-22714 (2010)

Enhancement of optical forces using slow light in a photonic crystal waveguide

Mark G. Scullion, Yoshihiko Arita, Thomas F. Krauss, and Kishan Dholakia
Optica 2(9) 816-821 (2015)

References

  • View by:
  • |
  • |
  • |

  1. O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
    [Crossref] [PubMed]
  2. M. Piliarik, H. Vaisocherová, and J. Homola, “A new surface plasmon resonance sensor for high-throughput screening applications,” Biosens. Bioelectron. 20(10), 2104–2110 (2005).
    [Crossref] [PubMed]
  3. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
    [Crossref] [PubMed]
  4. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
    [Crossref] [PubMed]
  5. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  6. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref] [PubMed]
  7. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
    [Crossref] [PubMed]
  8. C. R. Mace, C. C. Striemer, and B. L. Miller, “Theoretical and experimental analysis of arrayed imaging reflectometry as a sensitive proteomics technique,” Anal. Chem. 78(15), 5578–5583 (2006).
    [Crossref] [PubMed]
  9. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [Crossref] [PubMed]
  10. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
    [Crossref] [PubMed]
  11. M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32(22), 3284–3286 (2007).
    [Crossref] [PubMed]
  12. S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
    [Crossref] [PubMed]
  13. S. Pal, A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, “Selective virus detection in complex sample matrices with photonic crystal optical cavities,” Biosens. Bioelectron. 44, 229–234 (2013).
    [Crossref] [PubMed]
  14. S. Pal, P. M. Fauchet, and B. L. Miller, “1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem. 84(21), 8900–8908 (2012).
    [PubMed]
  15. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  16. M. R. Lee and P. M. Fauchet, “Two-dimensional Si photonic crystal microcavity for single particle detection,” in 2007 4th IEEE International Conference on Group IV Photonics (2007), pp. 1–3.
    [Crossref]
  17. M. A. Lifson, D. Basu Roy, and B. L. Miller, “Enhancing the detection limit of nanoscale biosensors via topographically selective functionalization,” Anal. Chem. 86(2), 1016–1022 (2014).
    [Crossref] [PubMed]
  18. J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
    [Crossref] [PubMed]
  19. P. Abgrall and A.-M. Gué, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
    [Crossref]
  20. P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
    [Crossref] [PubMed]
  21. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [Crossref] [PubMed]
  22. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [Crossref] [PubMed]
  23. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  24. S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34(21), 3451–3453 (2009).
    [Crossref] [PubMed]
  25. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
    [Crossref]
  26. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
    [Crossref] [PubMed]
  27. H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett. 35(17), 2855–2857 (2010).
    [Crossref] [PubMed]
  28. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
    [Crossref] [PubMed]
  29. A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
    [Crossref] [PubMed]
  30. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
    [Crossref] [PubMed]
  31. X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
    [Crossref] [PubMed]
  32. J. T. Rubin and L. I. Deych, “Optical forces due to spherical microresonators and their manifestation in optically induced orbital motion of nanoparticles,” Phys. Rev. A 84(2), 023844 (2011).
    [Crossref]
  33. A. T. Heiniger, B. L. Miller, and P. M. Fauchet, “Optical and fluidic design for guaranteed trapping and detection of particles in a silicon microfluidic and photonic crystal system,” Proc. SPIE 7888, 78880L (2011).
    [Crossref]
  34. P. Langevin, “On the theory of Brownian motion,” C. R. Acad. Sci. 146, 530–533 (1908).
  35. K. Atkinson, An Introduction to Numerical Analysis, 2nd ed. (Wiley, 1989).
  36. J. H. Harker, J. F. Richardson, and J. R. Backhurst, Chemical Engineering, 5th ed. (Butterworth-Heinemann, 2002, Volume 2).
  37. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University, 2000).
  38. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
    [Crossref] [PubMed]
  39. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. 11(4), 1491–1499 (1994).
    [Crossref]
  40. “Lumerical Solutions, Inc. | Optical and photonic design and engineering software products,” http://www.lumerical.com/ .
  41. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
    [Crossref]
  42. A. Li and G. Ahmadi, “Deposition of aerosols on surfaces in a turbulent channel flow,” Int. J. Eng. Sci. 31(3), 435–451 (1993).
    [Crossref]
  43. R. A. Harvey, P. C. Champe, and B. D. Fisher, Microbiology, 2nd ed. (Lippincott Williams & Wilkins, 2006).

2015 (1)

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

2014 (2)

M. A. Lifson, D. Basu Roy, and B. L. Miller, “Enhancing the detection limit of nanoscale biosensors via topographically selective functionalization,” Anal. Chem. 86(2), 1016–1022 (2014).
[Crossref] [PubMed]

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

2013 (1)

S. Pal, A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, “Selective virus detection in complex sample matrices with photonic crystal optical cavities,” Biosens. Bioelectron. 44, 229–234 (2013).
[Crossref] [PubMed]

2012 (1)

S. Pal, P. M. Fauchet, and B. L. Miller, “1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem. 84(21), 8900–8908 (2012).
[PubMed]

2011 (3)

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

J. T. Rubin and L. I. Deych, “Optical forces due to spherical microresonators and their manifestation in optically induced orbital motion of nanoparticles,” Phys. Rev. A 84(2), 023844 (2011).
[Crossref]

A. T. Heiniger, B. L. Miller, and P. M. Fauchet, “Optical and fluidic design for guaranteed trapping and detection of particles in a silicon microfluidic and photonic crystal system,” Proc. SPIE 7888, 78880L (2011).
[Crossref]

2010 (6)

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett. 35(17), 2855–2857 (2010).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

2009 (4)

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34(21), 3451–3453 (2009).
[Crossref] [PubMed]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2007 (9)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[Crossref] [PubMed]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
[Crossref] [PubMed]

M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32(22), 3284–3286 (2007).
[Crossref] [PubMed]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[Crossref] [PubMed]

P. Abgrall and A.-M. Gué, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

2006 (2)

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[Crossref]

C. R. Mace, C. C. Striemer, and B. L. Miller, “Theoretical and experimental analysis of arrayed imaging reflectometry as a sensitive proteomics technique,” Anal. Chem. 78(15), 5578–5583 (2006).
[Crossref] [PubMed]

2005 (2)

M. Piliarik, H. Vaisocherová, and J. Homola, “A new surface plasmon resonance sensor for high-throughput screening applications,” Biosens. Bioelectron. 20(10), 2104–2110 (2005).
[Crossref] [PubMed]

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

1996 (1)

1994 (1)

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. 11(4), 1491–1499 (1994).
[Crossref]

1993 (1)

A. Li and G. Ahmadi, “Deposition of aerosols on surfaces in a turbulent channel flow,” Int. J. Eng. Sci. 31(3), 435–451 (1993).
[Crossref]

1908 (1)

P. Langevin, “On the theory of Brownian motion,” C. R. Acad. Sci. 146, 530–533 (1908).

Abgrall, P.

P. Abgrall and A.-M. Gué, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[Crossref]

Ahmadi, G.

A. Li and G. Ahmadi, “Deposition of aerosols on surfaces in a turbulent channel flow,” Int. J. Eng. Sci. 31(3), 435–451 (1993).
[Crossref]

Albaladejo, S.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Altug, H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Arnold, S.

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Badolato, A.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Baker, J. E.

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

S. Pal, A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, “Selective virus detection in complex sample matrices with photonic crystal optical cavities,” Biosens. Bioelectron. 44, 229–234 (2013).
[Crossref] [PubMed]

Barth, M.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[Crossref]

Basu Roy, D.

M. A. Lifson, D. Basu Roy, and B. L. Miller, “Enhancing the detection limit of nanoscale biosensors via topographically selective functionalization,” Anal. Chem. 86(2), 1016–1022 (2014).
[Crossref] [PubMed]

Benson, O.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[Crossref]

Beumer, T. A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Brambilla, G.

Cai, H.

Connor, J. H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Crozier, K.

Del Campo, F. J.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Deych, L. I.

J. T. Rubin and L. I. Deych, “Optical forces due to spherical microresonators and their manifestation in optically induced orbital motion of nanoparticles,” Phys. Rev. A 84(2), 023844 (2011).
[Crossref]

Draine, B. T.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. 11(4), 1491–1499 (1994).
[Crossref]

Erickson, D.

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Fauchet, P. M.

S. Pal, A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, “Selective virus detection in complex sample matrices with photonic crystal optical cavities,” Biosens. Bioelectron. 44, 229–234 (2013).
[Crossref] [PubMed]

S. Pal, P. M. Fauchet, and B. L. Miller, “1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem. 84(21), 8900–8908 (2012).
[PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

A. T. Heiniger, B. L. Miller, and P. M. Fauchet, “Optical and fluidic design for guaranteed trapping and detection of particles in a silicon microfluidic and photonic crystal system,” Proc. SPIE 7888, 78880L (2011).
[Crossref]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
[Crossref] [PubMed]

M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32(22), 3284–3286 (2007).
[Crossref] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Flatau, P. J.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. 11(4), 1491–1499 (1994).
[Crossref]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Galli, M.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Gerace, D.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Gué, A.-M.

P. Abgrall and A.-M. Gué, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[Crossref]

Guillermain, E.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Heiniger, A. T.

A. T. Heiniger, B. L. Miller, and P. M. Fauchet, “Optical and fluidic design for guaranteed trapping and detection of particles in a silicon microfluidic and photonic crystal system,” Proc. SPIE 7888, 78880L (2011).
[Crossref]

Holler, S.

Homola, J.

M. Piliarik, H. Vaisocherová, and J. Homola, “A new surface plasmon resonance sensor for high-throughput screening applications,” Biosens. Bioelectron. 20(10), 2104–2110 (2005).
[Crossref] [PubMed]

Horak, P.

Horvath, R.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[Crossref] [PubMed]

Hu, J.

Huang, M.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Kawata, S.

Keng, D.

Kimerling, L.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Lai, Y.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Langevin, P.

P. Langevin, “On the theory of Brownian motion,” C. R. Acad. Sci. 146, 530–533 (1908).

Laroche, M.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Larsen, N. B.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[Crossref] [PubMed]

Lazcka, O.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Lee, M. R.

Li, A.

A. Li and G. Ahmadi, “Deposition of aerosols on surfaces in a turbulent channel flow,” Int. J. Eng. Sci. 31(3), 435–451 (1993).
[Crossref]

Lifson, M. A.

M. A. Lifson, D. Basu Roy, and B. L. Miller, “Enhancing the detection limit of nanoscale biosensors via topographically selective functionalization,” Anal. Chem. 86(2), 1016–1022 (2014).
[Crossref] [PubMed]

S. Pal, A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, “Selective virus detection in complex sample matrices with photonic crystal optical cavities,” Biosens. Bioelectron. 44, 229–234 (2013).
[Crossref] [PubMed]

Lin, S.

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Mace, C. R.

C. R. Mace, C. C. Striemer, and B. L. Miller, “Theoretical and experimental analysis of arrayed imaging reflectometry as a sensitive proteomics technique,” Anal. Chem. 78(15), 5578–5583 (2006).
[Crossref] [PubMed]

Mandal, S.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[Crossref] [PubMed]

Marqués, M. I.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Miller, B. L.

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

M. A. Lifson, D. Basu Roy, and B. L. Miller, “Enhancing the detection limit of nanoscale biosensors via topographically selective functionalization,” Anal. Chem. 86(2), 1016–1022 (2014).
[Crossref] [PubMed]

S. Pal, A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, “Selective virus detection in complex sample matrices with photonic crystal optical cavities,” Biosens. Bioelectron. 44, 229–234 (2013).
[Crossref] [PubMed]

S. Pal, P. M. Fauchet, and B. L. Miller, “1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem. 84(21), 8900–8908 (2012).
[PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

A. T. Heiniger, B. L. Miller, and P. M. Fauchet, “Optical and fluidic design for guaranteed trapping and detection of particles in a silicon microfluidic and photonic crystal system,” Proc. SPIE 7888, 78880L (2011).
[Crossref]

C. R. Mace, C. C. Striemer, and B. L. Miller, “Theoretical and experimental analysis of arrayed imaging reflectometry as a sensitive proteomics technique,” Anal. Chem. 78(15), 5578–5583 (2006).
[Crossref] [PubMed]

Minkov, M.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Muñoz, F. X.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Pal, S.

S. Pal, A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, “Selective virus detection in complex sample matrices with photonic crystal optical cavities,” Biosens. Bioelectron. 44, 229–234 (2013).
[Crossref] [PubMed]

S. Pal, P. M. Fauchet, and B. L. Miller, “1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem. 84(21), 8900–8908 (2012).
[PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Pedersen, H. C.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[Crossref] [PubMed]

Piliarik, M.

M. Piliarik, H. Vaisocherová, and J. Homola, “A new surface plasmon resonance sensor for high-throughput screening applications,” Biosens. Bioelectron. 20(10), 2104–2110 (2005).
[Crossref] [PubMed]

Pirotta, S.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Poon, A. W.

Rubin, J. T.

J. T. Rubin and L. I. Deych, “Optical forces due to spherical microresonators and their manifestation in optically induced orbital motion of nanoparticles,” Phys. Rev. A 84(2), 023844 (2011).
[Crossref]

Sáenz, J. J.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Savona, V.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Schonbrun, E.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Serey, X.

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Sheehan, P. E.

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

Shopova, S. I.

Skivesen, N.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[Crossref] [PubMed]

Sriram, R.

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Striemer, C. C.

C. R. Mace, C. C. Striemer, and B. L. Miller, “Theoretical and experimental analysis of arrayed imaging reflectometry as a sensitive proteomics technique,” Anal. Chem. 78(15), 5578–5583 (2006).
[Crossref] [PubMed]

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Tani, T.

Thinggaard, S.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[Crossref] [PubMed]

Urbinati, G.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Vaisocherová, H.

M. Piliarik, H. Vaisocherová, and J. Homola, “A new surface plasmon resonance sensor for high-throughput screening applications,” Biosens. Bioelectron. 20(10), 2104–2110 (2005).
[Crossref] [PubMed]

van Hövell, S. W.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Vollmer, F.

Whitman, L. J.

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Xu, F.

Yadav, A. R.

S. Pal, A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, “Selective virus detection in complex sample matrices with photonic crystal optical cavities,” Biosens. Bioelectron. 44, 229–234 (2013).
[Crossref] [PubMed]

Yang, A. H. J.

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Yanik, A. A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Zurawsky, W.

Anal. Chem. (3)

C. R. Mace, C. C. Striemer, and B. L. Miller, “Theoretical and experimental analysis of arrayed imaging reflectometry as a sensitive proteomics technique,” Anal. Chem. 78(15), 5578–5583 (2006).
[Crossref] [PubMed]

S. Pal, P. M. Fauchet, and B. L. Miller, “1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem. 84(21), 8900–8908 (2012).
[PubMed]

M. A. Lifson, D. Basu Roy, and B. L. Miller, “Enhancing the detection limit of nanoscale biosensors via topographically selective functionalization,” Anal. Chem. 86(2), 1016–1022 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[Crossref]

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Biosens. Bioelectron. (5)

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

S. Pal, A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, “Selective virus detection in complex sample matrices with photonic crystal optical cavities,” Biosens. Bioelectron. 44, 229–234 (2013).
[Crossref] [PubMed]

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

M. Piliarik, H. Vaisocherová, and J. Homola, “A new surface plasmon resonance sensor for high-throughput screening applications,” Biosens. Bioelectron. 20(10), 2104–2110 (2005).
[Crossref] [PubMed]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[Crossref] [PubMed]

C. R. Acad. Sci. (1)

P. Langevin, “On the theory of Brownian motion,” C. R. Acad. Sci. 146, 530–533 (1908).

Int. J. Eng. Sci. (1)

A. Li and G. Ahmadi, “Deposition of aerosols on surfaces in a turbulent channel flow,” Int. J. Eng. Sci. 31(3), 435–451 (1993).
[Crossref]

J. Micromech. Microeng. (1)

P. Abgrall and A.-M. Gué, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. 11(4), 1491–1499 (1994).
[Crossref]

Lab Chip (2)

J. E. Baker, R. Sriram, and B. L. Miller, “Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing,” Lab Chip 15(4), 971–990 (2015).
[Crossref] [PubMed]

A. H. J. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

Nano Lett. (5)

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett. 10(12), 4962–4969 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21(30), 305202 (2010).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nature (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (1)

J. T. Rubin and L. I. Deych, “Optical forces due to spherical microresonators and their manifestation in optically induced orbital motion of nanoparticles,” Phys. Rev. A 84(2), 023844 (2011).
[Crossref]

Phys. Rev. Lett. (1)

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

A. T. Heiniger, B. L. Miller, and P. M. Fauchet, “Optical and fluidic design for guaranteed trapping and detection of particles in a silicon microfluidic and photonic crystal system,” Proc. SPIE 7888, 78880L (2011).
[Crossref]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Other (7)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

M. R. Lee and P. M. Fauchet, “Two-dimensional Si photonic crystal microcavity for single particle detection,” in 2007 4th IEEE International Conference on Group IV Photonics (2007), pp. 1–3.
[Crossref]

K. Atkinson, An Introduction to Numerical Analysis, 2nd ed. (Wiley, 1989).

J. H. Harker, J. F. Richardson, and J. R. Backhurst, Chemical Engineering, 5th ed. (Butterworth-Heinemann, 2002, Volume 2).

G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University, 2000).

“Lumerical Solutions, Inc. | Optical and photonic design and engineering software products,” http://www.lumerical.com/ .

R. A. Harvey, P. C. Champe, and B. D. Fisher, Microbiology, 2nd ed. (Lippincott Williams & Wilkins, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of a large-defect photonic crystal cavity. (b) Enlarged image of defect and (c) optical mode on resonance over area depicted in (b). Fluid flow profile in (d) cross-section and (e) profile. Channel has dimensions 10x2 μm2. Photonic crystal has lattice constant a = 366 nm, holes have radius 0.3a, and the defect has radius 0.75a. The silicon slab’s thickness is 317 nm, and the surrounding fluid is water (n = 1.33).
Fig. 2
Fig. 2 Trajectories of particles in a microfluidic channel (10x2 μm2 cross-section) near a photonic crystal resonator optically pumped at (a) 0 W and (b) 100 mW. Particles have refractive index 1.41 and radius 50 nm. Background medium is water.
Fig. 3
Fig. 3 Minimum detectable concentration nmin with and without Brownian motion included in the equation of motion. Average fluid flow rate U0 = 10−3 m/s and flow is parallel to input waveguide. The dashed horizontal line gives nmin for zero input power when Brownian motion is included. Particles are latex beads of refractive index 1.41 and radius 50 nm. Experiment runtime is assumed to be one hour.
Fig. 4
Fig. 4 Minimum detectable concentration nmin under flow conditions of (a) constant flow time of one hour and (b) constant volume of 7.2 nL allowed to flow over sensor. (c) Optical force in the z-direction. Scale is in pN. Particles are latex beads of refractive index 1.41 and radius 50 nm. Flow is parallel to input waveguide.
Fig. 5
Fig. 5 Comparison of nmin between flow parallel and perpendicular to input waveguide. Average flow rate is 10−3 m/s, particles are latex beads of refractive index 1.41 and radius 50 nm.
Fig. 6
Fig. 6 Dependence of nmin on particle radius for various optical powers. Average flow rate is 10−4 m/s, particles are latex beads of refractive index 1.41 and radius 50 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

m p x ¨ p ( t ) = F d r a g ( x p ( t ) ) + F o p t ( x p ( t ) ) + m p n ( t ) .
F K R = π r p 2 ρ p ( u x ˙ p ) | u x ˙ p | ( 1.84 R e p 0.31 + 2.93 R e p 0.006 ) 3.45 .
R e p = 2 r p ρ p | u x ˙ p | η .
F o p t = π 3 a p 3 ( ε p ε m ) ε 0 [ α ] | E 0 ( r ) | 2 + 4 π 3 a p 3 ( ε p ε m ) ε 0 σ c S ( r ) + 4 π i 3 a p 3 ( ε p ε m ) ε 0 σ c × L ( r )
α 0 = 3 V ε p ε m ε p + 2 ε m
α = α 0 1 + i n p 3 k 0 3 α 0 / ( 6 π ) .
n i ( t ) = G i π S 0 Δ t .
δ λ = λ 0 2 d 3 r Δ ε ( r ) | E ( r ) | 2 d 3 r ε ( r ) | E ( r ) | 2
Δ λ ( t ) = n t C S δ ¯ λ ¯ ( x , y ) u z ( x , y ) d x d y
n min ( t ) = Δ λ t h t C S δ ¯ λ ¯ ( x , y ) u z ( x , y ) d x d y .

Metrics