Abstract

A novel photonic integrated circuit is proposed that, using an RF source, generates at its output ports the same magnitude but opposite sign high order single optical side bands of a suppressed optical carrier. A single stage parallel Mach-Zehnder Modulator (MZM) and a two-stage series parallel MZM architecture are described and their relative merits discussed. A transfer matrix method is used to describe the operation of the circuits. The theoretical analysis is validated by computer simulation. As an illustration of a prospective application, it is shown how the circuit may be used as a key element of an optical transmission system to transport radio signals over fibre for wireless access; generating remotely a mm-wave carrier modulated by digital IQ data. A detailed calculation of symbol error rate is presented to characterise the system performance. The circuit may be fabricated in any integration platform offering a suitable phase modulator circuit element such as LiNbO3, Silicon, and III-V or hybrid technology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Universal discrete Fourier optics RF photonic integrated circuit architecture

Trevor J. Hall and Mehedi Hasan
Opt. Express 24(7) 7600-7610 (2016)

Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation

Mehedi Hasan, Ramón Maldonado-Basilio, and Trevor J. Hall
Opt. Lett. 40(11) 2501-2504 (2015)

Integrated optical modulator for signal up-conversion over radio-on-fiber link

Woo-Kyung Kim, Soon-Woo Kwon, Woo-Jin Jeong, Geun-Sik Son, Kwang-Hyun Lee, Woo-Young Choi, Woo-Seok Yang, Hyung-Man Lee, and Han-Young Lee
Opt. Express 17(4) 2638-2645 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
    [Crossref]
  2. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
    [Crossref]
  3. C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
    [Crossref]
  4. P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
    [Crossref]
  5. Y. Zhang and S. Pan, “Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a Dual- Parallel Mach-Zehnder modulator,” Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, 1–4 (2012) (IMWS).
  6. J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
    [Crossref]
  7. R. Guemri, F. Lucarz, and T. J. Hall, “Filter less millimeter-wave optical generation using optical phase modulators without DC bias,” IEEE 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Grenoble (2014).
  8. M. Hasan, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet, and T. J. Hall, “Photonic integrated circuit for frequency 8- and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
    [Crossref] [PubMed]
  9. M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Comments on X. Yin, A. Wen, Y. Chen, and T. Wang, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
    [Crossref]
  10. P.-T. Shih, J. Chen, C.-T. Lin, W.-J. Jiang, H.-S. Huang, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation via frequency 12-tupling,” J. Lightwave Technol. 28(1), 71–78 (2010).
    [Crossref]
  11. Z. Zhu, S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, “A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion,” IEEE J. Quantum Electron. 49(11), 919–922 (2013).
    [Crossref]
  12. Y. Chen, A. Wen, J. Guo, L. Shang, and Y. Wang, “A novel optical mm-wave generation scheme based on three parallel Mach–Zehnder modulators,” Opt. Commun. 284(5), 1159–1169 (2011).
    [Crossref]
  13. J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photonics Technol. Lett. 19(14), 1057–1059 (2007).
    [Crossref]
  14. H. Chi and J. Yao, “Frequency quadrupling and up conversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
    [Crossref]
  15. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express 16(14), 10141–10151 (2008).
    [Crossref] [PubMed]
  16. W. Li and J. Yao, “Microwave generation based on optical domain microwave frequency octupling,” IEEE Photonics Technol. Lett. 22(1), 24–26 (2010).
    [Crossref]
  17. W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
    [Crossref]
  18. Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett. 26(12), 1199–1202 (2014).
    [Crossref]
  19. M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “An efficient microwave photonic frequency octo- tupler with high spurious sideband suppression,” Opt. Commun.Accepted.
  20. H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
    [Crossref]
  21. R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
    [Crossref]
  22. M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
    [Crossref] [PubMed]
  23. J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, and S. Guille, “Analysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulators,” J. Lightwave Technol. 29(10), 1522–1534 (2011).
    [Crossref]
  24. Y. Li, Y. Zhang, and Y. Huang, “Any bias point control technique for Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 25(24), 2412–2415 (2013).
    [Crossref]
  25. D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, and J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
    [Crossref] [PubMed]
  26. S. Dogru and N. Dagli, “0.77-V drive voltage electro-optic modulator with bandwidth exceeding 67 GHz,” Opt. Lett. 39(20), 6074–6077 (2014).
    [Crossref] [PubMed]
  27. Y. Ogiso, Y. Nakanishi, S. Kanazawa, E. Yamada, H. Tanobe, M. Arai, Y. Shibata, and M. Kohtoku, “Planar n-SI-n heterostructure athermal InP (110) optical modulator,” Opt. Express 22(21), 25776–25781 (2014).
    [Crossref] [PubMed]
  28. T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
    [Crossref]

2015 (3)

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Comments on X. Yin, A. Wen, Y. Chen, and T. Wang, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (5)

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Y. Li, Y. Zhang, and Y. Huang, “Any bias point control technique for Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 25(24), 2412–2415 (2013).
[Crossref]

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Z. Zhu, S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, “A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion,” IEEE J. Quantum Electron. 49(11), 919–922 (2013).
[Crossref]

D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, and J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
[Crossref] [PubMed]

2011 (2)

J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, and S. Guille, “Analysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulators,” J. Lightwave Technol. 29(10), 1522–1534 (2011).
[Crossref]

Y. Chen, A. Wen, J. Guo, L. Shang, and Y. Wang, “A novel optical mm-wave generation scheme based on three parallel Mach–Zehnder modulators,” Opt. Commun. 284(5), 1159–1169 (2011).
[Crossref]

2010 (4)

W. Li and J. Yao, “Microwave generation based on optical domain microwave frequency octupling,” IEEE Photonics Technol. Lett. 22(1), 24–26 (2010).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
[Crossref]

P.-T. Shih, J. Chen, C.-T. Lin, W.-J. Jiang, H.-S. Huang, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation via frequency 12-tupling,” J. Lightwave Technol. 28(1), 71–78 (2010).
[Crossref]

2008 (4)

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express 16(14), 10141–10151 (2008).
[Crossref] [PubMed]

H. Chi and J. Yao, “Frequency quadrupling and up conversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
[Crossref]

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
[Crossref]

2007 (1)

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photonics Technol. Lett. 19(14), 1057–1059 (2007).
[Crossref]

2005 (1)

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

1992 (1)

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Abarkan, M.

Abdul-Majid, S.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Absil, P.

Alloatti, L.

Antolín-Pérez, I.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Arai, M.

Baets, R.

Baier, M.

Bélisle, C.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Bogaerts, W.

Bourreau, D.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Chen, B.

Chen, H.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photonics Technol. Lett. 19(14), 1057–1059 (2007).
[Crossref]

Chen, J.

P.-T. Shih, J. Chen, C.-T. Lin, W.-J. Jiang, H.-S. Huang, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation via frequency 12-tupling,” J. Lightwave Technol. 28(1), 71–78 (2010).
[Crossref]

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Chen, M.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photonics Technol. Lett. 19(14), 1057–1059 (2007).
[Crossref]

Chen, Y.

Y. Chen, A. Wen, J. Guo, L. Shang, and Y. Wang, “A novel optical mm-wave generation scheme based on three parallel Mach–Zehnder modulators,” Opt. Commun. 284(5), 1159–1169 (2011).
[Crossref]

Chi, H.

Chi, S.

P.-T. Shih, J. Chen, C.-T. Lin, W.-J. Jiang, H.-S. Huang, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation via frequency 12-tupling,” J. Lightwave Technol. 28(1), 71–78 (2010).
[Crossref]

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Chu, X.

Z. Zhu, S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, “A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion,” IEEE J. Quantum Electron. 49(11), 919–922 (2013).
[Crossref]

Dagli, N.

de Bougrenet, J.-L.

de Bougrenet de la Tocnaye, J.-L.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

Dinu, R.

Dogru, S.

Fontana, M.

Fracasso, B.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Freude, W.

Gao, Y.

Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett. 26(12), 1199–1202 (2014).
[Crossref]

Goh, T.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Gu, W.

P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
[Crossref]

Guemri, R.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Guilbert, L.

Guille, S.

Guo, J.

Y. Chen, A. Wen, J. Guo, L. Shang, and Y. Wang, “A novel optical mm-wave generation scheme based on three parallel Mach–Zehnder modulators,” Opt. Commun. 284(5), 1159–1169 (2011).
[Crossref]

Hall, T. J.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Comments on X. Yin, A. Wen, Y. Chen, and T. Wang, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
[Crossref] [PubMed]

M. Hasan, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet, and T. J. Hall, “Photonic integrated circuit for frequency 8- and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “An efficient microwave photonic frequency octo- tupler with high spurious sideband suppression,” Opt. Commun.Accepted.

Hasan, M.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Comments on X. Yin, A. Wen, Y. Chen, and T. Wang, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
[Crossref] [PubMed]

M. Hasan, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet, and T. J. Hall, “Photonic integrated circuit for frequency 8- and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “An efficient microwave photonic frequency octo- tupler with high spurious sideband suppression,” Opt. Commun.Accepted.

Heidemann, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Hofstetter, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Hraimel, B.

Huang, H.

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
[Crossref]

Huang, H.-S.

Huang, Y.

Y. Li, Y. Zhang, and Y. Huang, “Any bias point control technique for Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 25(24), 2412–2415 (2013).
[Crossref]

Jiang, W.-J.

Josse, Y.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Kanazawa, S.

Kärnfelt, C.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Kohtoku, M.

Koos, C.

Korn, D.

Lane, P. M.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Lepage, G.

Leuthold, J.

Li, N.

Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett. 26(12), 1199–1202 (2014).
[Crossref]

Li, R.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Li, W.

W. Li and J. Yao, “Microwave generation based on optical domain microwave frequency octupling,” IEEE Photonics Technol. Lett. 22(1), 24–26 (2010).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

Li, Y.

Z. Zhu, S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, “A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion,” IEEE J. Quantum Electron. 49(11), 919–922 (2013).
[Crossref]

Y. Li, Y. Zhang, and Y. Huang, “Any bias point control technique for Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 25(24), 2412–2415 (2013).
[Crossref]

Li, Z.

P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
[Crossref]

Lin, C. T.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Lin, C.-T.

Lin, G.

Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett. 26(12), 1199–1202 (2014).
[Crossref]

Liu, H.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Lucarz, F.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet, and T. J. Hall, “Photonic integrated circuit for frequency 8- and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Ma, J.

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
[Crossref]

Maldonado-Basilio, R.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Comments on X. Yin, A. Wen, Y. Chen, and T. Wang, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
[Crossref] [PubMed]

M. Hasan, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet, and T. J. Hall, “Photonic integrated circuit for frequency 8- and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “An efficient microwave photonic frequency octo- tupler with high spurious sideband suppression,” Opt. Commun.Accepted.

Mino, S.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Mohamed, M.

Murata, K.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Nagatani, M.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Nakanishi, Y.

Ney, M.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Nikkhah, H.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Nosaka, H.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

O’Reilly, J. J.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Ogiso, Y.

Pajusco, P.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Palmer, R.

Pan, S.

Y. Zhang and S. Pan, “Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a Dual- Parallel Mach-Zehnder modulator,” Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, 1–4 (2012) (IMWS).

Pantouvaki, M.

Paquet, S.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Peng, P. C.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Peng, P.-C.

Qi, G.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Qiao, Y.

P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
[Crossref]

Rao, L.

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
[Crossref]

Saida, T.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Salvestrini, J. P.

Schindler, P. C.

Schmogrow, R.

Selvaraja, S. K.

Seregelyi, J.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Shang, L.

Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett. 26(12), 1199–1202 (2014).
[Crossref]

Y. Chen, A. Wen, J. Guo, L. Shang, and Y. Wang, “A novel optical mm-wave generation scheme based on three parallel Mach–Zehnder modulators,” Opt. Commun. 284(5), 1159–1169 (2011).
[Crossref]

Shen, J.

P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
[Crossref]

Shi, P.

P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
[Crossref]

Shibata, Y.

Shih, P. T.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Shih, P.-T.

Song, J.

P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
[Crossref]

Tanobe, H.

Tocnaye, J. B. L.

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Van Campenhout, J.

Verheyen, P.

Wang, K.

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
[Crossref]

Wang, T.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photonics Technol. Lett. 19(14), 1057–1059 (2007).
[Crossref]

Wang, X.

Z. Zhu, S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, “A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion,” IEEE J. Quantum Electron. 49(11), 919–922 (2013).
[Crossref]

Wang, Y.

Y. Chen, A. Wen, J. Guo, L. Shang, and Y. Wang, “A novel optical mm-wave generation scheme based on three parallel Mach–Zehnder modulators,” Opt. Commun. 284(5), 1159–1169 (2011).
[Crossref]

Wen, A.

Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett. 26(12), 1199–1202 (2014).
[Crossref]

Y. Chen, A. Wen, J. Guo, L. Shang, and Y. Wang, “A novel optical mm-wave generation scheme based on three parallel Mach–Zehnder modulators,” Opt. Commun. 284(5), 1159–1169 (2011).
[Crossref]

Wouters, J. M. D.

Wu, K.

Xiang, S.

Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett. 26(12), 1199–1202 (2014).
[Crossref]

Xie, S.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photonics Technol. Lett. 19(14), 1057–1059 (2007).
[Crossref]

Xin, X.

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
[Crossref]

Xue, W. Q.

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Yamada, E.

Yamazaki, H.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Yao, J.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

W. Li and J. Yao, “Microwave generation based on optical domain microwave frequency octupling,” IEEE Photonics Technol. Lett. 22(1), 24–26 (2010).
[Crossref]

H. Chi and J. Yao, “Frequency quadrupling and up conversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
[Crossref]

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Yu, C.

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
[Crossref]

Yu, H.

Yu, J.

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
[Crossref]

Yu, Q.

Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett. 26(12), 1199–1202 (2014).
[Crossref]

Yu, S.

P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
[Crossref]

Zhang, J.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photonics Technol. Lett. 19(14), 1057–1059 (2007).
[Crossref]

Zhang, X.

Zhang, Y.

Y. Li, Y. Zhang, and Y. Huang, “Any bias point control technique for Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 25(24), 2412–2415 (2013).
[Crossref]

Y. Zhang and S. Pan, “Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a Dual- Parallel Mach-Zehnder modulator,” Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, 1–4 (2012) (IMWS).

Zhao, G.

Z. Zhu, S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, “A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion,” IEEE J. Quantum Electron. 49(11), 919–922 (2013).
[Crossref]

Zhao, S.

Z. Zhu, S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, “A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion,” IEEE J. Quantum Electron. 49(11), 919–922 (2013).
[Crossref]

Zhu, Z.

Z. Zhu, S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, “A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion,” IEEE J. Quantum Electron. 49(11), 919–922 (2013).
[Crossref]

Ann. Telecommun. (1)

T. J. Hall, R. Maldonado-Basilio, S. Abdul-Majid, J. Seregelyi, R. Li, I. Antolín-Pérez, H. Nikkhah, F. Lucarz, J. B. L. Tocnaye, B. Fracasso, P. Pajusco, C. Kärnfelt, D. Bourreau, M. Ney, R. Guemri, Y. Josse, and H. Liu, “Radio-over-Fibre access for sustainable Digital Cities,” Ann. Telecommun. 68(1-2), 3–21 (2013).
[Crossref]

Electron. Lett. (1)

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Zhu, S. Zhao, Y. Li, X. Chu, X. Wang, and G. Zhao, “A radio-over-fiber system with Frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion,” IEEE J. Quantum Electron. 49(11), 919–922 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Gao, A. Wen, Q. Yu, N. Li, G. Lin, S. Xiang, and L. Shang, “Microwave generation with photonic frequency sextupling based on cascaded modulators,” IEEE Photon. Technol. Lett. 26(12), 1199–1202 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (4)

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photonics Technol. Lett. 19(14), 1057–1059 (2007).
[Crossref]

W. Li and J. Yao, “Microwave generation based on optical domain microwave frequency octupling,” IEEE Photonics Technol. Lett. 22(1), 24–26 (2010).
[Crossref]

C. T. Lin, P. T. Shih, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photonics Technol. Lett. 20(12), 1027–1029 (2008).
[Crossref]

Y. Li, Y. Zhang, and Y. Huang, “Any bias point control technique for Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 25(24), 2412–2415 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

J. Lightwave Technol. (3)

J. Mod. Opt. (2)

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Comments on X. Yin, A. Wen, Y. Chen, and T. Wang, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

J. Opt. Networking (1)

J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, “Optical millimeter wave generated by octupling the frequency of the local oscillator,” J. Opt. Networking 7(10), 837–845 (2008).
[Crossref]

Opt. Commun. (2)

Y. Chen, A. Wen, J. Guo, L. Shang, and Y. Wang, “A novel optical mm-wave generation scheme based on three parallel Mach–Zehnder modulators,” Opt. Commun. 284(5), 1159–1169 (2011).
[Crossref]

P. Shi, S. Yu, Z. Li, J. Song, J. Shen, Y. Qiao, and W. Gu, “A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator,” Opt. Commun. 283(19), 3667–3672 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Other (3)

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “An efficient microwave photonic frequency octo- tupler with high spurious sideband suppression,” Opt. Commun.Accepted.

Y. Zhang and S. Pan, “Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a Dual- Parallel Mach-Zehnder modulator,” Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, 1–4 (2012) (IMWS).

R. Guemri, F. Lucarz, and T. J. Hall, “Filter less millimeter-wave optical generation using optical phase modulators without DC bias,” IEEE 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Grenoble (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the high-order single sideband separation circuit using four Mach-Zehnder modulators in parallel; OC, Optical coupler; OS, Optical splitter; RF, Radio frequency; LO, RF Local oscillator.
Fig. 2
Fig. 2 Schematic diagram of the high-order sideband separation circuit using two series connected Mach-Zehnder modulators in parallel.
Fig. 3
Fig. 3 Schematic of the bias-less MZM with differentially driven phase modulators.
Fig. 4
Fig. 4 Schematic diagram of the down-link; PRBS, pseudo-random binary sequence; SMF, single mode fibre; PD, photodetector; BPF, band-pass filter; LPF, low pass filter; BERT, bit error rate tester.
Fig. 5
Fig. 5 Simulation results at the different stages of the proposed down-link architecture. A resolution bandwidth of 1 GHz is used in the both optical and electrical spectrum to record the data.
Fig. 6
Fig. 6 (a) Electrical spectrum at different SNR for transmission without fibre (b) constellation diagram at 18 dB SNR with measured EVM of 10%; (c) constellation diagram at 12 dB SNR (EVM is 20%); (d) electrical spectrum at different SNR for 50 km transmission through fibre (e) constellation diagram at 18 dB SNR with measured EVM of 11% (f) constellation at 12 dB SNR with an EVM of 21%.
Fig. 7
Fig. 7 Dependence of SER (a) and EVM (b) on SNR for 10 Gbit/s QPSK signals for transmission with and without fibre (c) dependence of SER on SNR for different line width of the laser.
Fig. 8
Fig. 8 (a) Dependence of SER on SNR for different laser line-width when the fibre dispersion is kept zero (b) dependence of harmonics optical power on modulation index and their suppression ratio; OP2, optical power of 2nd harmonics; OP6, optical power of 6th harmonics.

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

h = cos ( π v / v π ) .
B = [ 1 0 ] H [ h 1 0 0 h 2 ] H [ 1 0 ] A .
H = [ α i 1 α i 1 α α ] = 1 2 [ 1 i i 1 ] .
B = 1 2   ( h 1 h 2 ) A .
D = 1 2   ( h 3 h 4 ) C .
[ E 1 E 2 ] = 1 2 [ 1 i i 1 ] [ B 0 0 D ] [ 1 1 ] [ E i n ] .
E 1 = 1 2 E i n [ B i D ] .
E 2 = 1 2 E i n [ i B + D ] .
E 2 = i E 1 * .
E 1 = 1 4 E i n [ { cos ( π v 1 / v π ) cos ( π v 2 / v π ) } i { cos ( π v 3 / v π ) cos ( π v 4 / v π ) } ] .
cos ( z cos ( θ ) ) = J 0 ( z ) + 2 l = 1 ( 1 ) l J 2 l ( z ) cos ( 2 l θ ) .
cos ( z cos ( θ + π 2 ) ) = J 0 ( z ) + 2 l = 1 J 2 l ( z ) cos ( 2 l θ ) .
cos ( z cos ( θ ) ) cos ( z cos ( θ + π 2 ) ) = 4 l = 2 k + 1 ;   k = 1 , J 2 l ( z ) cos ( 2 l θ ) .
cos ( z cos ( θ + π 4 ) ) cos ( z cos ( θ + π 4 + π 2 ) ) = 4 l = 2 k + 1 ;   k = 1 , ( 1 ) k J 2 l ( z ) sin ( 2 l θ ) .
1 4 [ cos ( z cos ( θ ) ) cos ( z cos ( θ + π 2 ) ) ] i 1 4 [ cos ( z cos ( θ + π 4 ) ) cos ( z cos ( θ + π 4 + π 2 ) ) ] = l = 2 k + 1 ; k = 1 , J 2 l ( z ) exp ( ( 1 ) k 2 l θ ) .
E 1 =   [   J 2 ( m ) exp ( i 2 ω R F t ) + J 6 ( m ) exp ( i 6 ω R F t ) +   J 10 ( m ) exp ( i 10 ω R F t ) ] E i n .
E 2 = i [   J 2 ( m ) exp ( i 2 ω R F t ) + J 6 ( m ) exp ( i 6 ω R F t ) +   J 10 ( m ) exp ( i 10 ω R F t ) ] E i n .
m = π v R F / v π .
h = sin ( π v / v π ) .
h 12 = sin ( π v 1 / v π ) sin ( π v 2 / v π ) .
h 34 = sin ( π v 3 / v π ) sin ( π v 4 / v π ) .
[ E 1 E 2 ] = 1 2 H [ h 12 0 0 h 34 ] [ 1 1 ] [ E i n ] .
E 1 = 1 2   ( h 12 i h 34 ) E i n = i E 2 * .
E 2 = 1 2   ( i h 12 + h 34 ) E i n = i E 1 * .
h 12 = 1 2 [ cos { π ( v 1 v 2 ) / v π } cos { π ( v 1 + v 2 ) / v π } ] .
h 34 = 1 2 [ cos { π ( v 3 v 4 ) / v π } cos { π ( v 3 + v 4 ) / v π } ] .
v P = v R F cos ( ω R F t + Δ φ P ) .
v 1 v 2 = v R F [ cos ( ω R F t ) cos ( ω R F t + π / 2 ) ] = 2 v R F cos ( ω R F t π / 4 ) .
v 1 + v 2 = v R F [ cos ( ω R F t ) + cos ( ω R F t + π / 2 ) ] = 2 v R F cos ( ω R F t + π / 4 ) .
v 3 v 4 = v R F [ cos ( ω R F t + π / 4 ) cos ( ω R F t + 3 π / 4 ) ] = 2 v R F cos ( ω R F t ) .
v 3 + v 4 = v R F [ cos ( ω R F t + π / 4 ) + cos ( ω R F t + 3 π / 4 ) ] = 2 v R F cos ( ω R F t + π / 2 ) .
h 12 = 1 2 [ cos { m cos ( ω R F t π / 4 ) } cos { m cos ( ω R F t + π / 4 ) } ] .
h 34 = 1 2 [ cos { m cos ( ω R F t ) } cos { m cos ( ω R F t + π / 2 ) } ] .
m = 2 π v R F / v π .
cos ( m cos ( θ π / 4 ) ) cos ( m cos ( θ + π / 4 ) ) = 4 l = 2 k + 1 ; k = 1 , ( 1 ) k J 2 l ( z ) sin ( 2 l θ ) .
h 12 = 2 l = 2 k + 1 ; k = 1 , ( 1 ) k J 2 l ( z ) sin ( 2 l θ ) .
h 34 = 2 l = 2 k + 1 ; k = 1 , J 2 l ( m ) cos ( 2 l ω R F t ) .
E 2 = l = 2 k + 1 ; k = 1 , J 2 l ( m ) exp ( i ( 1 ) k 2 l ω R F t ) .
E 1 = i [   J 2 ( m ) exp ( i 2 ω R F t ) + J 6 ( m ) exp ( i 6 ω R F t ) +   J 10 ( m ) exp ( i 10 ω R F t ) ] E i n .
E 2 = [   J 2 ( m ) exp ( i 2 ω R F t ) + J 6 ( m ) exp ( i 6 ω R F t ) +   J 10 ( m ) exp ( i 10 ω R F t ) ] E i n .

Metrics