J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref]
[PubMed]
S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]
S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]
A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]
H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref]
[PubMed]
S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
[Crossref]
[PubMed]
W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref]
[PubMed]
S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]
B. H. Cheng, Y.-C. Lan, and D. P. Tsai, “Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light,” Opt. Express 21, 14898–14906 (2013).
[Crossref]
[PubMed]
A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]
W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]
S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]
C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013).
[Crossref]
[PubMed]
D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref]
[PubMed]
Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]
O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]
A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]
H. Benisty and F. Goudail, “Dark-field hyperlens exploiting a planar fan of tips,” J. Opt. Soc. Am. B. 29, 2595–2602 (2012).
[Crossref]
B. O. Leung and K. C. Chou, “Review of super-resolution fluorescence microscopy for biology,” Appl. Spectrosc. 65, 967–980 (2011).
[Crossref]
[PubMed]
X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
[Crossref]
H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]
Y. Jin, “Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves,” PIER. 105, 347–364 (2010).
[Crossref]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref]
[PubMed]
X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]
[PubMed]
N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).
[Crossref]
[PubMed]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]
Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref]
[PubMed]
K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]
Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref]
[PubMed]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]
[PubMed]
I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref]
[PubMed]
G. V. Eleftheriades and O. F. Siddiqui, “Negative refraction and focusing in hyperbolic transmission-line periodic grids,” IEEE Trans. Microw. Theory Techn. 53, 396–403 (2005)
[Crossref]
N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]
[PubMed]
D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]
K. G. Balmain and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
[Crossref]
J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]
S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]
A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]
H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]
K. G. Balmain and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
[Crossref]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref]
[PubMed]
A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]
A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]
P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B. 73, 113110 (2006).
[Crossref]
H. Benisty and F. Goudail, “Dark-field hyperlens exploiting a planar fan of tips,” J. Opt. Soc. Am. B. 29, 2595–2602 (2012).
[Crossref]
K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]
W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]
S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]
S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]
W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref]
[PubMed]
A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]
W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref]
[PubMed]
S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref]
[PubMed]
G. V. Eleftheriades and O. F. Siddiqui, “Negative refraction and focusing in hyperbolic transmission-line periodic grids,” IEEE Trans. Microw. Theory Techn. 53, 396–403 (2005)
[Crossref]
N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]
[PubMed]
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref]
[PubMed]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]
[PubMed]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
H. Benisty and F. Goudail, “Dark-field hyperlens exploiting a planar fan of tips,” J. Opt. Soc. Am. B. 29, 2595–2602 (2012).
[Crossref]
S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]
W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref]
[PubMed]
P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B. 73, 113110 (2006).
[Crossref]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]
I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref]
[PubMed]
A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]
A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]
S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]
X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
[Crossref]
Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]
Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref]
[PubMed]
W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref]
[PubMed]
Y. Jin, “Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves,” PIER. 105, 347–364 (2010).
[Crossref]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
[Crossref]
[PubMed]
O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]
S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]
X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
[Crossref]
A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]
K. G. Balmain and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
[Crossref]
S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]
A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]
[PubMed]
Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref]
[PubMed]
N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]
[PubMed]
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref]
[PubMed]
J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref]
[PubMed]
S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]
D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref]
[PubMed]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]
X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]
[PubMed]
Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref]
[PubMed]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]
[PubMed]
Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref]
[PubMed]
D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref]
[PubMed]
S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]
H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]
W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref]
[PubMed]
D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]
W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]
H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]
[PubMed]
S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]
Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref]
[PubMed]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]
A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]
K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref]
A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref]
[PubMed]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]
D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]
S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]
J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref]
[PubMed]
W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]
X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
[Crossref]
V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]
G. V. Eleftheriades and O. F. Siddiqui, “Negative refraction and focusing in hyperbolic transmission-line periodic grids,” IEEE Trans. Microw. Theory Techn. 53, 396–403 (2005)
[Crossref]
S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]
S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]
S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
[Crossref]
[PubMed]
O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]
I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]
[PubMed]
Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref]
[PubMed]
Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref]
[PubMed]
N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]
[PubMed]
J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref]
[PubMed]
W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref]
[PubMed]
Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref]
[PubMed]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]
[PubMed]
W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]
H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]
[PubMed]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref]
[PubMed]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref]
[PubMed]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref]
[PubMed]
X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]
[PubMed]
Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref]
[PubMed]
Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref]
[PubMed]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]
[PubMed]
N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]
[PubMed]
N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).
[Crossref]
[PubMed]
S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]
A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]
S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
[Crossref]
[PubMed]
O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]
W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref]
[PubMed]
Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]
D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]
K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]
H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]
K. G. Balmain and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
[Crossref]
S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]
G. V. Eleftheriades and O. F. Siddiqui, “Negative refraction and focusing in hyperbolic transmission-line periodic grids,” IEEE Trans. Microw. Theory Techn. 53, 396–403 (2005)
[Crossref]
H. Benisty and F. Goudail, “Dark-field hyperlens exploiting a planar fan of tips,” J. Opt. Soc. Am. B. 29, 2595–2602 (2012).
[Crossref]
S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]
S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]
Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref]
[PubMed]
J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref]
[PubMed]
D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref]
[PubMed]
J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref]
[PubMed]
X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]
[PubMed]
N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).
[Crossref]
[PubMed]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]
[PubMed]
A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]
V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]
Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref]
[PubMed]
Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref]
[PubMed]
B. H. Cheng, Y.-C. Lan, and D. P. Tsai, “Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light,” Opt. Express 21, 14898–14906 (2013).
[Crossref]
[PubMed]
S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
[Crossref]
[PubMed]
X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
[Crossref]
C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013).
[Crossref]
[PubMed]
W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]
A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]
O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]
A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]
S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]
P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B. 73, 113110 (2006).
[Crossref]
J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref]
Y. Jin, “Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves,” PIER. 105, 347–364 (2010).
[Crossref]
S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref]
[PubMed]
A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref]
[PubMed]
N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]
[PubMed]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref]
[PubMed]
I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref]
[PubMed]
H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]
[PubMed]
W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).