Abstract

We propose a device for subwavelength optical imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only large-wavevector (evanescent) waves are transmitted while all propagating (small-wavevector) waves from the object area are blocked by the hyper-lens. We numerically demonstrate that as the result of such filtering, the image plane only contains scattered light from subwavelength features of the objects and is completely free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is shown to enhance the subwavelength image contrast by more than two orders of magnitude. These findings are essential for optical imaging of weakly scattering subwavelength objects, such as real-time dynamic nanoscopy of label-free biological objects.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dark-field hyperlens exploiting a planar fan of tips

Henri Benisty and François Goudail
J. Opt. Soc. Am. B 29(9) 2595-2602 (2012)

Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies

Tian Zhang, Lin Chen, and Xun Li
Opt. Express 21(18) 20888-20899 (2013)

Optical Hyperlens: Far-field imaging beyond the diffraction limit

Zubin Jacob, Leonid V. Alekseyev, and Evgenii Narimanov
Opt. Express 14(18) 8247-8256 (2006)

References

  • View by:
  • |
  • |
  • |

  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [Crossref]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [Crossref] [PubMed]
  5. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
    [Crossref] [PubMed]
  6. K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
    [Crossref]
  7. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
    [Crossref] [PubMed]
  8. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
    [Crossref] [PubMed]
  9. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
    [Crossref]
  10. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [Crossref] [PubMed]
  11. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [Crossref] [PubMed]
  12. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
    [Crossref] [PubMed]
  13. J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
    [Crossref] [PubMed]
  14. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
    [Crossref] [PubMed]
  15. A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
    [Crossref]
  16. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
    [Crossref]
  17. B. H. Cheng, Y.-C. Lan, and D. P. Tsai, “Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light,” Opt. Express 21, 14898–14906 (2013).
    [Crossref] [PubMed]
  18. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
    [Crossref] [PubMed]
  19. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
    [Crossref]
  20. H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
    [Crossref]
  21. H. Benisty and F. Goudail, “Dark-field hyperlens exploiting a planar fan of tips,” J. Opt. Soc. Am. B. 29, 2595–2602 (2012).
    [Crossref]
  22. B. O. Leung and K. C. Chou, “Review of super-resolution fluorescence microscopy for biology,” Appl. Spectrosc. 65, 967–980 (2011).
    [Crossref] [PubMed]
  23. S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
    [Crossref] [PubMed]
  24. A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
    [Crossref] [PubMed]
  25. H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
    [Crossref] [PubMed]
  26. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
    [Crossref]
  27. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
    [Crossref]
  28. S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
    [Crossref] [PubMed]
  29. W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
    [Crossref] [PubMed]
  30. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
    [Crossref]
  31. S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
    [Crossref]
  32. K. G. Balmain and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
    [Crossref]
  33. G. V. Eleftheriades and O. F. Siddiqui, “Negative refraction and focusing in hyperbolic transmission-line periodic grids,” IEEE Trans. Microw. Theory Techn. 53, 396–403 (2005)
    [Crossref]
  34. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B. 73, 113110 (2006).
    [Crossref]
  35. Y. Jin, “Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves,” PIER. 105, 347–364 (2010).
    [Crossref]
  36. W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
    [Crossref]
  37. S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
    [Crossref]
  38. N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).
    [Crossref] [PubMed]
  39. S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
    [Crossref]
  40. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
    [Crossref]
  41. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013).
    [Crossref] [PubMed]
  42. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
    [Crossref] [PubMed]
  43. S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
    [Crossref]

2015 (2)

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]

2014 (3)

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]

A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref] [PubMed]

2013 (10)

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
[Crossref] [PubMed]

W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref] [PubMed]

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

B. H. Cheng, Y.-C. Lan, and D. P. Tsai, “Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light,” Opt. Express 21, 14898–14906 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]

S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013).
[Crossref] [PubMed]

2012 (5)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]

H. Benisty and F. Goudail, “Dark-field hyperlens exploiting a planar fan of tips,” J. Opt. Soc. Am. B. 29, 2595–2602 (2012).
[Crossref]

2011 (2)

2010 (3)

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]

Y. Jin, “Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves,” PIER. 105, 347–364 (2010).
[Crossref]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

2009 (1)

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref] [PubMed]

2008 (2)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref] [PubMed]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).
[Crossref] [PubMed]

2007 (7)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref] [PubMed]

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

2006 (2)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B. 73, 113110 (2006).
[Crossref]

2005 (2)

G. V. Eleftheriades and O. F. Siddiqui, “Negative refraction and focusing in hyperbolic transmission-line periodic grids,” IEEE Trans. Microw. Theory Techn. 53, 396–403 (2005)
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

2002 (1)

K. G. Balmain and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Alekseyev, L. V.

Alù, A.

Amirhosseini, M. K.

S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]

Andryieuski, A.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]

Argyropoulos, C.

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref] [PubMed]

Ayas, S.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]

Balmain, K. G.

K. G. Balmain and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
[Crossref]

Bartal, G.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Belov, P. A.

A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B. 73, 113110 (2006).
[Crossref]

Benisty, H.

H. Benisty and F. Goudail, “Dark-field hyperlens exploiting a planar fan of tips,” J. Opt. Soc. Am. B. 29, 2595–2602 (2012).
[Crossref]

Bulu, I.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]

Cai, W.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

Campione, S.

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]

S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]

Capolino, F.

S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]

Cheng, B. H.

Cheng, Q.

W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref] [PubMed]

Chigrin, D. N.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]

Choi, H.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Chou, K. C.

Cinar, G.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Cui, T. J.

W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref] [PubMed]

Dana, A.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Davis, C. C.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

Drachev, V. P.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

Durant, S.

Ekiz, O.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Eleftheriades, G. V.

A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

G. V. Eleftheriades and O. F. Siddiqui, “Negative refraction and focusing in hyperbolic transmission-line periodic grids,” IEEE Trans. Microw. Theory Techn. 53, 396–403 (2005)
[Crossref]

Estakhri, N. M.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Fok, L.

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref] [PubMed]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Gijs, M. A.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref] [PubMed]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Goudail, F.

H. Benisty and F. Goudail, “Dark-field hyperlens exploiting a planar fan of tips,” J. Opt. Soc. Am. B. 29, 2595–2602 (2012).
[Crossref]

Guclu, C.

S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]

Guler, M. O.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Han, S.

Han, T. C.

W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref] [PubMed]

Hao, Y.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B. 73, 113110 (2006).
[Crossref]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Hu, H.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]

Hung, Y.-J.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Iorsh, I. V.

A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]

Ishii, S.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
[Crossref]

Jacob, Z.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

Jiang, W. X.

W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref] [PubMed]

Jin, Y.

Y. Jin, “Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves,” PIER. 105, 347–364 (2010).
[Crossref]

Kaya, Y.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Kidwai, O.

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
[Crossref] [PubMed]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]

Kildishev, A. V.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Kocaay, D.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Kolinko, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Kremer, P. C.

K. G. Balmain and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
[Crossref]

Lan, Y.-C.

Lavrinenko, A. V.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Lee, S.

Leung, B. O.

Li, J.

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref] [PubMed]

Litchinitser, N. M.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Liu, S.

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]

Liu, Z.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref] [PubMed]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Luk, T. S.

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]

Ma, C.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]

Ma, H. F.

W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref] [PubMed]

Mock, J. J.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Monticone, F.

Mortensen, N. A.

W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref] [PubMed]

Narimanov, E.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Ni, X.

Orlov, A. A.

A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]

Ozbay, E.

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]

Ozkan, A. D.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref]

Pikus, Y.

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Qiu, C.-W.

W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref] [PubMed]

Rho, J.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Rye, P.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Schurig, D.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Sedighy, S. H.

S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]

Shalaev, M. I.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Shalaev, V.

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

Shalaev, V. M.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19, 25242–25254 (2011).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Siddiqui, O. F.

G. V. Eleftheriades and O. F. Siddiqui, “Negative refraction and focusing in hyperbolic transmission-line periodic grids,” IEEE Trans. Microw. Theory Techn. 53, 396–403 (2005)
[Crossref]

Sinclair, M. B.

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]

Sipe, J. E.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
[Crossref] [PubMed]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

Smolyaninov, I. I.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

Soran, Z.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Sun, J.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Tekinay, A. B.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Tekinay, T.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Thoreson, M. D.

Tomak, A.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Toren, P.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Tsai, D. P.

Tunc, I.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Wong, A. M.

A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

Wubs, M.

W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]

Xiong, Y.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Yan, W.

W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]

Yang, H.

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref] [PubMed]

Ye, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Yin, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref] [PubMed]

Zareie, H.

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

Zhang, S.

W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref] [PubMed]

Zhang, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15, 6947–6954 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).
[Crossref] [PubMed]

Zhukovsky, S. V.

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]

A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic meta-materials,” Opt. Express 21, 14982–14987 (2013).
[Crossref] [PubMed]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]

Adv. Mater. (1)

W. X. Jiang, C.-W. Qiu, T. C. Han, Q. Cheng, H. F. Ma, S. Zhang, and T. J. Cui, “Broadband all-dielectric magnifying lens for far-field high-resolution imaging,” Adv. Mater. 25, 6963–6968 (2013).
[Crossref] [PubMed]

Adv. Optoelectron. (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Appl. Phys. Lett. (3)

D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004).
[Crossref]

K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett. 90, 254102 (2007).
[Crossref]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[Crossref]

Appl. Spectrosc. (1)

IEEE Antennas Wireless Propag. Lett. (1)

K. G. Balmain and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wireless Propag. Lett. 1, 146–149 (2002).
[Crossref]

IEEE Trans. Microw. Theory Techn (1)

S. H. Sedighy, C. Guclu, S. Campione, M. K. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,”IEEE Trans. Microw. Theory Techn 61, 4110–4117 (2013).
[Crossref]

IEEE Trans. Microw. Theory Techn. (1)

G. V. Eleftheriades and O. F. Siddiqui, “Negative refraction and focusing in hyperbolic transmission-line periodic grids,” IEEE Trans. Microw. Theory Techn. 53, 396–403 (2005)
[Crossref]

J. Opt. Soc. Am. B. (2)

H. Benisty and F. Goudail, “Dark-field hyperlens exploiting a planar fan of tips,” J. Opt. Soc. Am. B. 29, 2595–2602 (2012).
[Crossref]

S. Campione, T. S. Luk, S. Liu, and M. B. Sinclair, “Realizing high-quality, ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials,” J. Opt. Soc. Am. B. 32, 1809–1815 (2015).
[Crossref]

Laser Photonics Rev. (1)

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

Nano Lett. (1)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007).
[Crossref] [PubMed]

Nat. Commun. (3)

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Nat. Mater. (4)

J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic magnifying hyper-lens,” Nat. Mater. 8, 931–934 (2009).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref] [PubMed]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).
[Crossref] [PubMed]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Opt. Express (6)

Opt. Express. (1)

W. Yan, N. A. Mortensen, and M. Wubs, “Hyperbolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express. 21, 15027–15036 (2013).
[Crossref]

Photonic Nanostruct. (1)

A. A. Orlov, I. V. Iorsh, S. V. Zhukovsky, and P. A. Belov, “Controlling light with plasmonic multilayers,” Photonic Nanostruct. 12, 213–230 (2014).
[Crossref]

Phys. Rev. A. (1)

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A. 85, 053842 (2012).
[Crossref]

Phys. Rev. B (1)

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86, 121108 (2012).
[Crossref]

Phys. Rev. B. (2)

S. V. Zhukovsky, A. Andryieuski, J. E. Sipe, and A. V. Lavrinenko, “From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers,” Phys. Rev. B. 90, 155429 (2014).
[Crossref]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B. 73, 113110 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref]

PIER. (1)

Y. Jin, “Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves,” PIER. 105, 347–364 (2010).
[Crossref]

Sci. Rep. (2)

S. Ayas, G. Cinar, A. D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, H. Zareie, T. Tekinay, A. B. Tekinay, M. O. Guler, and A. Dana, “Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering,” Sci. Rep. 3, 2624 (2013).
[Crossref] [PubMed]

A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

Science (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[Crossref] [PubMed]

Small (1)

H. Yang, N. Moullan, J. Auwerx, and M. A. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref] [PubMed]

Other (1)

W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Overview of an optical imaging system with subwavelength resolution, schematically showing propagating low-k (k < naω/c) and evanescent high-k (k > naω/c) components of radiation scattered off subwavelength objects. (b–e) Schematics of how information contained in these components passes through different types of imaging systems. (b) Conventional optical lens: only the propagating low-k components are transmitted while the high-k evanescent waves carrying near-field information are lost, resulting in a blurred, diffraction-limited image. (c) Superlens [3]: high-k evanescent waves are amplified and the near-field information is recovered, enabling a subwavelength image, which nevertheless remains only in the near-field and cannot be reproduced by conventional optics. (d) Hyperlens [10]: high-k evanescent waves are converted to propagating waves using an HMM [9]; the resulting subwavelength image can therefore be seen in the far field, however its contrast against the background illumination will be poor if the object is weakly scattering. (e) Proposed dark-field hyperlens: using a modified kind of HMM [15] similarly couples the high-k evanescent waves to the far field but blocks the low-k propagating waves, filtering out the background illumination and allowing the subwavelength image contrast to be drastically enhanced. For the two kinds of hyperlenses, example dispersion relations are shown as insets in (d) and (e).
Fig. 2
Fig. 2 Two-dimensional dispersion relation for (a) type I hyperbolic metamaterial (dielectric permittivity tensor components being ε|| = 0.36, ε = −13.31) and (b) type II hyperbolic metamaterial (ε|| = −1.06, ε = 8.09) The insets schematically show the direction of the group velocity for waves in certain parts of the k-space; for the type I hyperbolic meta-material, it is possible that the majority of lower-k waves propagate in the y-direction (the canalization regime). Only one branch for k is shown in the lossy case to aid the visual comparison with the lossless case.
Fig. 3
Fig. 3 Subwavelength imaging properties of the DFHL: (a) The Fourier transform F(k) of a subwavelength object given by f(x) = ∏(x/D) with D = λ/2, overlaid with example transfer functions of the ambient medium Ha(k) (low-pass filtering) and of the DFHL H(k) (high-pass filtering). (b) Comparison between the images of an object with the size D =λ/6 obtained by Eq. (6) (solid line) and Eq. (7) (dashed line) with na = 1 and kcutoff = 2k0, respectively. The shaded area shows the object f(x) itself. The inset shows the same plot zoomed out in the x axis to show the sinc dependence in ga(x).
Fig. 4
Fig. 4 (a–b) Full-wave frequency-domain simulation of a plane wave (λ = 715 nm) impinging on two metallic scatterers (diameter 70 nm, n = 0.01 + 1.5i), placed 300 nm apart, in front of planar structures with hyperbolic dispersion (a) conventional bright-field and (b) proposed dark-field structures. Both structures are alternating metal-dielectric multilayers containing a total of 100 layers with 10 nm thickness and material parameters nm = 0.154 + 1.589i, nd = 1.794 (type-I HMM) and nm = 0.14 + 2.06i, nd = 1.45 (type-II HMM) for the BFHL and DFHL, respectively. The area behind the structures contains a high-index medium (ns = 10). (c–d) Same as (a–b) but for dielectric scatterers (n = 1.5). The lower plots (green lines) show the x-dependence of the field intensity 700 nm behind the planar structure (y = 1700nm).
Fig. 5
Fig. 5 Cylindrical-geometry DFHL: numerical results showing (a) field map and (b) field intensity map for a beam incident on two subwavelength scatterers, 70 nm in diameter and 290 nm apart, in front of a DFHL with cylindrical geometry. The structure consists of 2×50 layers with thickness 15 nm and nm = 0.14+2.26i, nd = 1.45; the inner and outer radius of the structure is 1000 and 2500 nm, respectively. To simultaneously show the field before, inside, and after the hyperlens, the color scale of the fields after the hyperlens is magnified by 50.
Fig. 6
Fig. 6 Operation of the DFHL under different object separation. (a) Intensity maps similar to Fig. 5(b), cropped to show the right-hand side image, for three different values (400, 300 and 200 nm) of the distance between the subwavelength scatterers. (b) Dependence of the field intensity behind the the hyperlens (500 nm behind its outer surface, shown by the dashed line in the intensity plots) for the distance between objects varying between 75 and 600 nm in 25-nm steps; dotted lines are a guide to the eye showing the theoretical location of the image points in the absence of interference effects between high-k cones.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k 0 2 = ω 2 c 2 = k | | 2 ε + k 2 ε | | ,
g ( x , y ) = 1 ( 2 π ) 2 d k x d k y H ( k x , k y ) e i ( k x x + k y y ) × d x d y f ( x , y ) e i ( k x x + k y y ) .
k = ε | | k 0 2 ( ε | | / ε ) k | | 2 ,
ε | | = ρ ε m + ( 1 ρ ) ε d , ε = [ ρ ε m 1 + ( 1 ρ ) ε d 1 ] 1 ,
g ( x ) = 1 2 π d k x H ( k x ) e i k x x d x ( x / D ) e i k x x ,
g ( x ) = ( x D ) 1 π [ Si ( D 2 x 4 k cutoff ) + Si ( D + 2 x 4 k cutoff ) ] ,
g a ( x ) = 1 π [ Si ( D 2 x 4 n a k 0 ) + Si ( D + 2 x 4 n a k 0 ) ] ,
V sub = lim δ | g ( D / 2 δ ) | | g ( D / 2 + δ ) | | g ( D / 2 δ ) | + | g ( D / 2 + δ ) | = 1 2 [ 1 + | π Si ( k cutoff D / 2 ) 1 | ] 1 ,

Metrics