Abstract

We investigate the improvement of the conversion efficiency of ultra-thin (~500nm-thick) microcrystalline silicon (μc-Si) solar cells incorporating photonic-crystal structures, where light absorption is strongly enhanced by the multiple resonant modes in the photonic crystal. We focus on the quality of the intrinsic μc-Si layer deposited on the substrate, which is structured to form a photonic crystal at its upper surface with a period of several hundred nanometers. We first study the crystalline quality from the viewpoint of the crystalline fraction and show that the efficiency can be improved when the deposition conditions for the μc-Si layer are tuned to give an almost constant crystalline fraction of ~50% across the entire film. We then study the influence of the photonic-crystal structure on the crystalline quality. From transmission-electron microscope images, we show that the collision of μc-Si grains growing at different angles occurs when a photonic-crystal structure with an angular surface is used; this can be suppressed by introducing a rounded surface structure. As a result, we demonstrate an efficiency of 8.7% in a ~500-nm thick, homo-junction μc-Si solar cell, which has only ~1/4 the thickness of typical μc-Si solar cells. We also discuss the possibility of further improving the efficiency by performing calculations that focus on the absorption characteristics of the fabricated cell structure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping regimes in thin-film silicon solar cells with a photonic pattern

Simone Zanotto, Marco Liscidini, and Lucio Claudio Andreani
Opt. Express 18(5) 4260-4272 (2010)

Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics

Haofeng Li, Jeremy Brouillet, Alan Salas, Xiaoxin Wang, and Jifeng Liu
Opt. Mater. Express 3(9) 1385-1396 (2013)

Structural design of photonic crystal thin film silicon solar cells by sensitivity analysis: Inclusion of electrode absorption

Yosuke Kawamoto, Yoshinori Tanaka, Kenji Ishizaki, Menaka De Zoysa, Takashi Asano, and Susumu Noda
Opt. Express 23(15) A896-A902 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
    [Crossref]
  2. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
    [Crossref]
  3. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
    [Crossref]
  4. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” Appl. Phys. Lett. 108(4), 044505 (2010).
  5. K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
    [Crossref]
  6. M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
    [Crossref]
  7. H. Sai, Y. Kanamori, and M. Kondo, “Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response,” Appl. Phys. Lett. 98(11), 113502 (2011).
    [Crossref]
  8. M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
    [Crossref]
  9. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
    [Crossref] [PubMed]
  10. H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102(5), 053509 (2013).
    [Crossref]
  11. H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, “Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide,” Appl. Phys. Express 6(10), 104101 (2013).
    [Crossref]
  12. S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).
  13. H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0%-efficiency thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
    [Crossref]
  14. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [Crossref]
  15. H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrated and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
    [Crossref]
  16. M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1714–1720 (2009).
    [Crossref]
  17. S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
    [Crossref]
  18. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [Crossref] [PubMed]
  19. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
    [Crossref] [PubMed]
  20. O. El Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. Roca I Cabarrocas, H. Jeon, and C. Seassal, “Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell,” Opt. Express 18(S3Suppl 3), A293–A299 (2010).
    [Crossref] [PubMed]
  21. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
    [Crossref] [PubMed]
  22. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
    [Crossref]
  23. A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
    [Crossref]
  24. Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl., doi: (2015).
    [Crossref]
  25. Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
    [Crossref] [PubMed]
  26. Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thing film silicon solar cell structures,” IEEE Photonics J. 6(1), 4700110 (2014).
    [Crossref]
  27. A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental demonstration of quasi-resonant absorption in silicon thin films for enhanced solar light trapping,” ACS Photonics 1(4), 304–309 (2014).
    [Crossref]
  28. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
    [Crossref]
  29. H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
    [Crossref]
  30. M. N. van den Donker, B. Rech, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. van de Sanden, “Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer,” Prog. Photovolt. Res. Appl. 15(4), 291–301 (2007).
    [Crossref]
  31. A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystallinesilicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104(3), 034508 (2008).
    [Crossref]
  32. C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582 (2003).
    [Crossref]
  33. C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 81(1), 61–71 (2004).
    [Crossref]
  34. T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, “Correlation between microstructure and photovoltaic performance of polycrystalline silicon thin film solar cells,” Jpn. J. Appl. Phys. 41(1), 20–27 (2002).
    [Crossref]
  35. A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [Crossref]
  36. H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
    [Crossref]
  37. U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
    [Crossref] [PubMed]
  38. M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
    [Crossref]

2014 (3)

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0%-efficiency thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thing film silicon solar cell structures,” IEEE Photonics J. 6(1), 4700110 (2014).
[Crossref]

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental demonstration of quasi-resonant absorption in silicon thin films for enhanced solar light trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

2013 (8)

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102(5), 053509 (2013).
[Crossref]

H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, “Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide,” Appl. Phys. Express 6(10), 104101 (2013).
[Crossref]

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
[Crossref] [PubMed]

2012 (3)

U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
[Crossref] [PubMed]

H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

2011 (3)

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

H. Sai, Y. Kanamori, and M. Kondo, “Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response,” Appl. Phys. Lett. 98(11), 113502 (2011).
[Crossref]

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

2010 (4)

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” Appl. Phys. Lett. 108(4), 044505 (2010).

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[Crossref] [PubMed]

O. El Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. Roca I Cabarrocas, H. Jeon, and C. Seassal, “Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell,” Opt. Express 18(S3Suppl 3), A293–A299 (2010).
[Crossref] [PubMed]

2009 (3)

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
[Crossref] [PubMed]

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrated and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1714–1720 (2009).
[Crossref]

2008 (1)

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystallinesilicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104(3), 034508 (2008).
[Crossref]

2007 (3)

M. N. van den Donker, B. Rech, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. van de Sanden, “Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer,” Prog. Photovolt. Res. Appl. 15(4), 291–301 (2007).
[Crossref]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[Crossref] [PubMed]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[Crossref]

2005 (1)

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

2004 (2)

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 81(1), 61–71 (2004).
[Crossref]

2003 (1)

C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582 (2003).
[Crossref]

2002 (1)

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, “Correlation between microstructure and photovoltaic performance of polycrystalline silicon thin film solar cells,” Jpn. J. Appl. Phys. 41(1), 20–27 (2002).
[Crossref]

2000 (1)

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

1999 (2)

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[Crossref]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

Agrawal, M.

Ahn, S.

Alexander, D. T. L.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Asano, T.

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thing film silicon solar cell structures,” IEEE Photonics J. 6(1), 4700110 (2014).
[Crossref]

Babchenko, O.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

Bailat, J.

C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 81(1), 61–71 (2004).
[Crossref]

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Ballif, C.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1714–1720 (2009).
[Crossref]

Battaglia, C.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Berginski, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[Crossref]

Bermel, P.

Boccard, M.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Bugnon, G.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Cantoni, M.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Caratelli, D.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

Carius, R.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Charrière, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Chutinan, A.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

Cubero, O.

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Cuony, P.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

De Zoysa, M.

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental demonstration of quasi-resonant absorption in silicon thin films for enhanced solar light trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thing film silicon solar cell structures,” IEEE Photonics J. 6(1), 4700110 (2014).
[Crossref]

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl., doi: (2015).
[Crossref]

Deinega, A.

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[Crossref]

Despeisse, M.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Ding, L.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

Dominé, D.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1714–1720 (2009).
[Crossref]

Donker, H.

C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582 (2003).
[Crossref]

Drouard, E.

Droz, C.

C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 81(1), 61–71 (2004).
[Crossref]

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

El Daif, O.

Escarré, J.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Eyderman, S.

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[Crossref]

Fave, A.

Feitknecht, L.

C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 81(1), 61–71 (2004).
[Crossref]

Finger, F.

M. N. van den Donker, B. Rech, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. van de Sanden, “Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer,” Prog. Photovolt. Res. Appl. 15(4), 291–301 (2007).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Franken, R. H.

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrated and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

Fujita, M.

Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
[Crossref] [PubMed]

H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[Crossref]

Fujita, S.

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl., doi: (2015).
[Crossref]

Fujiwara, H.

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

Gomard, G.

Hänni, S.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Hapke, P.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Holovsky, J.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

Houben, L.

M. N. van den Donker, B. Rech, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. van de Sanden, “Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer,” Prog. Photovolt. Res. Appl. 15(4), 291–301 (2007).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Hozuki, N.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102(5), 053509 (2013).
[Crossref]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Hüpkes, J.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[Crossref]

Igari, S.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[Crossref]

Imada, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Isabella, O.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Ishizaki, K.

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental demonstration of quasi-resonant absorption in silicon thin films for enhanced solar light trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thing film silicon solar cell structures,” IEEE Photonics J. 6(1), 4700110 (2014).
[Crossref]

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl., doi: (2015).
[Crossref]

Jäger, K.

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Jeon, H.

Jia, H.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” Appl. Phys. Lett. 108(4), 044505 (2010).

Joannopoulos, J. D.

John, S.

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[Crossref]

Jovanov, V.

Kaminski, A.

Kanamori, Y.

H. Sai, Y. Kanamori, and M. Kondo, “Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response,” Appl. Phys. Lett. 98(11), 113502 (2011).
[Crossref]

Kawamoto, Y.

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thing film silicon solar cell structures,” IEEE Photonics J. 6(1), 4700110 (2014).
[Crossref]

Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
[Crossref] [PubMed]

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl., doi: (2015).
[Crossref]

Kessels, W. M. M.

M. N. van den Donker, B. Rech, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. van de Sanden, “Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer,” Prog. Photovolt. Res. Appl. 15(4), 291–301 (2007).
[Crossref]

C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582 (2003).
[Crossref]

Kim, S.

Kimerling, L. C.

Kluth, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Knipp, D.

Koida, T.

H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, “Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide,” Appl. Phys. Express 6(10), 104101 (2013).
[Crossref]

Kondo, M.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0%-efficiency thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, “Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide,” Appl. Phys. Express 6(10), 104101 (2013).
[Crossref]

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102(5), 053509 (2013).
[Crossref]

H. Sai, Y. Kanamori, and M. Kondo, “Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response,” Appl. Phys. Lett. 98(11), 113502 (2011).
[Crossref]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” Appl. Phys. Lett. 108(4), 044505 (2010).

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystallinesilicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104(3), 034508 (2008).
[Crossref]

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

Kroll, U.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Kurz, H.

Lambertz, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Lemiti, M.

Letartre, X.

Li, H. B. T.

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrated and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

Löfgren, L.

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Luo, C.

Madani, O.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1714–1720 (2009).
[Crossref]

Mallick, S. B.

Matsubara, K.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0%-efficiency thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

Matsui, T.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0%-efficiency thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, “Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide,” Appl. Phys. Express 6(10), 104101 (2013).
[Crossref]

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystallinesilicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104(3), 034508 (2008).
[Crossref]

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, “Correlation between microstructure and photovoltaic performance of polycrystalline silicon thin film solar cells,” Jpn. J. Appl. Phys. 41(1), 20–27 (2002).
[Crossref]

Meier, J.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 81(1), 61–71 (2004).
[Crossref]

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Meillaud, F.

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1714–1720 (2009).
[Crossref]

Mück, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Nakajima, A.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[Crossref]

Neykova, N.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

Nicolay, S.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

Noda, S.

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental demonstration of quasi-resonant absorption in silicon thin films for enhanced solar light trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thing film silicon solar cell structures,” IEEE Photonics J. 6(1), 4700110 (2014).
[Crossref]

Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
[Crossref] [PubMed]

H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[Crossref]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl., doi: (2015).
[Crossref]

Obermeyer, P.

Ogawa, H.

H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[Crossref]

Okamoto, H.

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, “Correlation between microstructure and photovoltaic performance of polycrystalline silicon thin film solar cells,” Jpn. J. Appl. Phys. 41(1), 20–27 (2002).
[Crossref]

Okamoto, Y.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[Crossref]

Oskooi, A.

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental demonstration of quasi-resonant absorption in silicon thin films for enhanced solar light trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[Crossref]

Palanchoke, U.

Parascandolo, G.

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Park, Y.

Petit, A. M. H. N.

C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582 (2003).
[Crossref]

Peumans, P.

Poruba, A.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

Purkrt, A.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

Python, M.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1714–1720 (2009).
[Crossref]

Rath, J. K.

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrated and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

Rech, B.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[Crossref]

M. N. van den Donker, B. Rech, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. van de Sanden, “Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer,” Prog. Photovolt. Res. Appl. 15(4), 291–301 (2007).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Remes, Z.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

Roca I Cabarrocas, P.

Sai, H.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0%-efficiency thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, “Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide,” Appl. Phys. Express 6(10), 104101 (2013).
[Crossref]

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102(5), 053509 (2013).
[Crossref]

H. Sai, Y. Kanamori, and M. Kondo, “Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response,” Appl. Phys. Lett. 98(11), 113502 (2011).
[Crossref]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” Appl. Phys. Lett. 108(4), 044505 (2010).

Saika, H.

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, “Correlation between microstructure and photovoltaic performance of polycrystalline silicon thin film solar cells,” Jpn. J. Appl. Phys. 41(1), 20–27 (2002).
[Crossref]

Saito, K.

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102(5), 053509 (2013).
[Crossref]

H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, “Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide,” Appl. Phys. Express 6(10), 104101 (2013).
[Crossref]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Schade, H.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Schöpe, G.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[Crossref]

Schropp, R. E. I.

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrated and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

Schulte, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[Crossref]

Seassal, C.

Shah, A.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 81(1), 61–71 (2004).
[Crossref]

Shigeta, H.

H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[Crossref]

Smets, A. H. M.

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystallinesilicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104(3), 034508 (2008).
[Crossref]

Smit, C.

C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582 (2003).
[Crossref]

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Söderström, T.

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Solntsev, S.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Stiebig, H.

U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
[Crossref] [PubMed]

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[Crossref]

Tanaka, Y.

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thing film silicon solar cell structures,” IEEE Photonics J. 6(1), 4700110 (2014).
[Crossref]

Y. Tanaka, Y. Kawamoto, M. Fujita, and S. Noda, “Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals,” Opt. Express 21(17), 20111–20118 (2013).
[Crossref] [PubMed]

H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[Crossref]

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl., doi: (2015).
[Crossref]

Tawada, Y.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[Crossref]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Toyama, T.

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, “Correlation between microstructure and photovoltaic performance of polycrystalline silicon thin film solar cells,” Jpn. J. Appl. Phys. 41(1), 20–27 (2002).
[Crossref]

Tsuda, Y.

H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[Crossref]

Tsukiji, M.

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, “Correlation between microstructure and photovoltaic performance of polycrystalline silicon thin film solar cells,” Jpn. J. Appl. Phys. 41(1), 20–27 (2002).
[Crossref]

Umeda, T.

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl., doi: (2015).
[Crossref]

Vallat-Sauvain, E.

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1714–1720 (2009).
[Crossref]

C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 81(1), 61–71 (2004).
[Crossref]

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

van de Sanden, M. C. M.

M. N. van den Donker, B. Rech, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. van de Sanden, “Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer,” Prog. Photovolt. Res. Appl. 15(4), 291–301 (2007).
[Crossref]

C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582 (2003).
[Crossref]

van den Donker, M. N.

M. N. van den Donker, B. Rech, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. van de Sanden, “Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer,” Prog. Photovolt. Res. Appl. 15(4), 291–301 (2007).
[Crossref]

van Swaaij, R. A. C. M. M.

C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582 (2003).
[Crossref]

Vanecek, M.

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Vetterl, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Viktorovitch, P.

Wagner, H.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

Wuttig, M.

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[Crossref]

Wyrsch, N.

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Yablonovitch, E.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

Yamamoto, K.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[Crossref]

Yoshida, I.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0%-efficiency thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, “Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide,” Appl. Phys. Express 6(10), 104101 (2013).
[Crossref]

Yoshimi, M.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[Crossref]

Zeman, M.

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

Zeng, L.

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental demonstration of quasi-resonant absorption in silicon thin films for enhanced solar light trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

Appl. Phys. Express (1)

H. Sai, T. Koida, T. Matsui, I. Yoshida, K. Saito, and M. Kondo, “Microcrystalline silicon solar cells with 10.5% efficiency realized by improved photon absorption via periodic textures and highly transparent conductive oxide,” Appl. Phys. Express 6(10), 104101 (2013).
[Crossref]

Appl. Phys. Lett. (7)

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

H. Shigeta, M. Fujita, Y. Tanaka, A. Oskooi, H. Ogawa, Y. Tsuda, and S. Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[Crossref]

H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102(5), 053509 (2013).
[Crossref]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” Appl. Phys. Lett. 108(4), 044505 (2010).

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett. 98(16), 163503 (2011).
[Crossref]

H. Sai, Y. Kanamori, and M. Kondo, “Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response,” Appl. Phys. Lett. 98(11), 113502 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[Crossref]

IEEE J. Photovoltaics (2)

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0%-efficiency thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

S. Hänni, D. T. L. Alexander, L. Ding, G. Bugnon, M. Boccard, C. Battaglia, P. Cuony, J. Escarré, G. Parascandolo, S. Nicolay, M. Cantoni, M. Despeisse, F. Meillaud, and C. Ballif, “On the interplay between microstructure and interfaces in high-efficiency microcrystalline silicon solar cells,” IEEE J. Photovoltaics 3(1), 11–16 (2013).
[Crossref]

IEEE Photonics J. (1)

Y. Kawamoto, Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Asano, and S. Noda, “Structural optimization of photonic crystals for enhancing optical absorption of thing film silicon solar cell structures,” IEEE Photonics J. 6(1), 4700110 (2014).
[Crossref]

IEEE Trans. Electron. Dev. (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[Crossref]

J. Appl. Phys. (4)

M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in thin-film solar cells,” J. Appl. Phys. 101(7), 074903 (2007).
[Crossref]

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystallinesilicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104(3), 034508 (2008).
[Crossref]

C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582 (2003).
[Crossref]

A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys. 113(22), 224501 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, “Correlation between microstructure and photovoltaic performance of polycrystalline silicon thin film solar cells,” Jpn. J. Appl. Phys. 41(1), 20–27 (2002).
[Crossref]

Opt. Express (6)

Phys. Rev. B (1)

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

M. Despeisse, C. Battaglia, M. Boccard, G. Bugnon, M. Charrière, P. Cuony, S. Hänni, L. Löfgren, F. Meillaud, G. Parascandolo, T. Söderström, and C. Ballif, “Optimization of thin film silicon solar cells on highly textured substrates,” Phys. Status Solidi., A Appl. Mater. Sci. 208(8), 1863–1868 (2011).
[Crossref]

Prog. Photovolt. Res. Appl. (4)

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl. 21(5), 821–826 (2013).

M. N. van den Donker, B. Rech, F. Finger, L. Houben, W. M. M. Kessels, and M. C. M. van de Sanden, “Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer,” Prog. Photovolt. Res. Appl. 15(4), 291–301 (2007).
[Crossref]

Sol. Energy Mater. Sol. Cells (5)

C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 81(1), 61–71 (2004).
[Crossref]

H. B. T. Li, R. H. Franken, J. K. Rath, and R. E. I. Schropp, “Structural defects caused by a rough substrated and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells,” Sol. Energy Mater. Sol. Cells 93(3), 338–349 (2009).
[Crossref]

M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, and C. Ballif, “Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1714–1720 (2009).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62(1–2), 97–108 (2000).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Other (1)

Y. Tanaka, K. Ishizaki, M. De Zoysa, T. Umeda, Y. Kawamoto, S. Fujita, and S. Noda, “Photonic crystal microcrystalline silicon solar cells,” Prog. Photovolt. Res. Appl., doi: (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic image of a photonic-crystal solar cell. (b) Photonic band diagram, assuming a 500-nm-thick Si layer and a lattice constant of 600 nm which corresponds to a 2 × 2 super-lattice photonic crystal with a fundamental lattice constant of ~300 nm.
Fig. 2
Fig. 2 Crystalline fraction with respect to the thickness of intrinsic μc-Si layer, where the i-layer was deposited by using a constant SiH4 concentration.
Fig. 3
Fig. 3 Tuning of crystalline fraction by modifying the SiH4 concentration during the growth. (a), (b) Change of the SiH4 concentration and the crystalline fraction with respect to the thickness.
Fig. 4
Fig. 4 TEM observation of the μc-Si layers deposited under constant and adjusted SiH4 concentrations. (a), (b) Dark field images of the samples with constant and adjusted SiH4 concentrations, respectively. (c), (d) Diffraction patterns of the samples shown in (a) and (b), respectively.
Fig. 5
Fig. 5 Fabrication of solar cell under the growth condition using adjusted SiH4 concentration. (a) SEM image, (b) J-V characteristics under AM1.5G irradiation, (c) EQE spectrum.
Fig. 6
Fig. 6 Tuning of the photonic-crystal surface topology for high-quality μc-Si growth. (a) SEM image of a sample with rounded surface after the deposition of Ag and ZnO:Ga. (b), (c) SEM and TEM images after the deposition of μc-Si and ITO layers, respectively.
Fig. 7
Fig. 7 Comparison of the growth results of microcrystalline silicon on (a) rod-type and (b) rounded photonic crystals.
Fig. 8
Fig. 8 Fabrication of solar cell on the rounded photonic-crystal structure. (a) SEM image, (b) J-V characteristics, (c) EQE spectrum.
Fig. 9
Fig. 9 Analysis of absorption characteristics considering the whole fabricated solar-cell structure. Portion of absorption in each layer is color coded. White area represents loss due to reflection.

Metrics