Abstract

Planar hybrid solar cells based on bulk GaAs wafers with a background doping density of 1016 cm−3 and poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) demonstrated an excellent power conversion efficiency of 8.99%. The efficiency of the cell was enhanced to 9.87% with a back-surface field feature using a molecular beam epitaxially grown n-type GaAs epi-layer. The efficiency and fill factor reach 11.86% and 0.8 when an additional p + GaAs epi-layer is deposited on the surface of the solar cells, which provides a front-surface field. The interface between the high- and low-doped regions in the polymer/GaAs and GaAs formed an electric field that introduced a barrier to minority carriers flow to the substrate and effectively reduced front surface carrier recombination, thereby enhancing light-generated free carrier collection efficiency and open-circuit voltage. Compared with the device without the front- and back-surface field, the fill factor and open-circuit voltage of the hybrid solar cell were improved from 0.76 to 0.8 and from 0.68 V to 0.77V, respectively. The highest efficiency reaches a record 13% when the Zonyl fluorosurfactant-treated PEDOT:PSS is used as a hole-transporting conducting layer for hybrid cells.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector

Saeed Khosroabadi and Seyyed Hossein Keshmiri
Opt. Express 22(S3) A921-A929 (2014)

Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode

Fangyuan Jiang, Tongfa Liu, Sheng Zeng, Qing Zhao, Xue Min, Zaifang Li, Jinhui Tong, Wei Meng, Sixing Xiong, and Yinhua Zhou
Opt. Express 23(3) A83-A91 (2015)

Plasmonic ITO-free polymer solar cell

Ming-Yi Lin, Yu Ling Kang, Yu-Cheng Chen, Tsung-Han Tsai, Shih-Chieh Lin, Yi-Hsiang Huang, Yi-Jiun Chen, Chun-Yang Lu, Hoang Yan Lin, Lon A. Wang, Chung-Chih Wu, and Si-Chen Lee
Opt. Express 22(S2) A438-A445 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Avasthi, S. Lee, Y. L. Loo, and J. C. Sturm, “Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells,” Adv. Mater. 23(48), 5762–5766 (2011).
    [Crossref] [PubMed]
  2. F. Zhang, B. Sun, T. Song, X. Zhu, and S. Lee, “Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
    [Crossref]
  3. X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
    [Crossref] [PubMed]
  4. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
    [Crossref] [PubMed]
  5. T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
    [Crossref]
  6. F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, “Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5(11), 4678–4684 (2013).
    [Crossref] [PubMed]
  7. Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, “Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100(18), 183901 (2012).
    [Crossref]
  8. Y. Zhu, T. Song, F. Zhang, S. T. Lee, and B. Sun, “Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential,” Appl. Phys. Lett. 102(11), 113504 (2013).
    [Crossref]
  9. M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate): grapheme oxide composite heterojunction solar cells,” Appl. Phys. Express 5(3), 032301 (2012).
    [Crossref]
  10. J. Y. Chen, C. Con, M. H. Yu, B. Cui, and K. W. Sun, “Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface,” ACS Appl. Mater. Interfaces 5(15), 7552–7558 (2013).
    [Crossref] [PubMed]
  11. J. Y. Chen, M. H. Yu, S. F. Chang, and K. W. Sun, “Highly efficient poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structures,” Appl. Phys. Lett. 103(13), 133901 (2013).
    [Crossref]
  12. B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in 37th IEEE Photovoltaic Specialists Conference (PVSC, 2011), pp. 000004–000008.
    [Crossref]
  13. H. Bi and R. R. Lapierre, “A GaAs nanowire/P3HT hybrid photovoltaic device,” Nanotechnology 20(46), 465205 (2009).
    [Crossref] [PubMed]
  14. G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
    [Crossref]
  15. J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells,” Nanotechnology 21(28), 285203 (2010).
    [Crossref] [PubMed]
  16. J. J. Chao, S. C. Shiu, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
    [Crossref]
  17. G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
    [Crossref] [PubMed]
  18. J. Zhang, Y. Zhang, F. Zhang, and B. Sun, “Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate),” Appl. Phys. Lett. 102(1), 013501 (2013).
    [Crossref]
  19. E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “The opto-electronic physics that broke the efficiency limit in solar cells,” 38th IEEE Photovoltic Specialists Conference (PVSC), 001556–001559 (2012).
    [Crossref]
  20. X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Schockley-Queisser limit,” IEEE J. Photovol. 3(2), 737–744 (2013).
    [Crossref]
  21. D. Alemu, H. Y. Wei, K. H. Ho, and C. W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells,” Energy Environ. Sci. 5(11), 9662–9671 (2012).
    [Crossref]
  22. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
    [Crossref]
  23. A. Savva, E. Georgiou, G. Papazoglou, A. Z. Chrusou, K. Kapnisis, and S. A. Choulis, “Photovoltaics analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 132, 507–514 (2015).
    [Crossref]
  24. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
    [Crossref]
  25. X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
    [Crossref]
  26. A. Kanwat and J. Jang, “Extremely stable organic photovoltaic incorporated with WOx doped PEDOT:PSS anode buffer layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 901–907 (2014).
    [Crossref]
  27. A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Org. Electron. 9(5), 727–734 (2008).
    [Crossref]

2015 (1)

A. Savva, E. Georgiou, G. Papazoglou, A. Z. Chrusou, K. Kapnisis, and S. A. Choulis, “Photovoltaics analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 132, 507–514 (2015).
[Crossref]

2014 (2)

A. Kanwat and J. Jang, “Extremely stable organic photovoltaic incorporated with WOx doped PEDOT:PSS anode buffer layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 901–907 (2014).
[Crossref]

X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
[Crossref]

2013 (6)

F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, “Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5(11), 4678–4684 (2013).
[Crossref] [PubMed]

Y. Zhu, T. Song, F. Zhang, S. T. Lee, and B. Sun, “Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential,” Appl. Phys. Lett. 102(11), 113504 (2013).
[Crossref]

J. Y. Chen, C. Con, M. H. Yu, B. Cui, and K. W. Sun, “Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface,” ACS Appl. Mater. Interfaces 5(15), 7552–7558 (2013).
[Crossref] [PubMed]

J. Y. Chen, M. H. Yu, S. F. Chang, and K. W. Sun, “Highly efficient poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structures,” Appl. Phys. Lett. 103(13), 133901 (2013).
[Crossref]

J. Zhang, Y. Zhang, F. Zhang, and B. Sun, “Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate),” Appl. Phys. Lett. 102(1), 013501 (2013).
[Crossref]

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Schockley-Queisser limit,” IEEE J. Photovol. 3(2), 737–744 (2013).
[Crossref]

2012 (8)

D. Alemu, H. Y. Wei, K. H. Ho, and C. W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells,” Energy Environ. Sci. 5(11), 9662–9671 (2012).
[Crossref]

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate): grapheme oxide composite heterojunction solar cells,” Appl. Phys. Express 5(3), 032301 (2012).
[Crossref]

Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, “Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100(18), 183901 (2012).
[Crossref]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

J. J. Chao, S. C. Shiu, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

2011 (3)

S. Avasthi, S. Lee, Y. L. Loo, and J. C. Sturm, “Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells,” Adv. Mater. 23(48), 5762–5766 (2011).
[Crossref] [PubMed]

F. Zhang, B. Sun, T. Song, X. Zhu, and S. Lee, “Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

2010 (2)

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells,” Nanotechnology 21(28), 285203 (2010).
[Crossref] [PubMed]

2009 (1)

H. Bi and R. R. Lapierre, “A GaAs nanowire/P3HT hybrid photovoltaic device,” Nanotechnology 20(46), 465205 (2009).
[Crossref] [PubMed]

2008 (1)

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Org. Electron. 9(5), 727–734 (2008).
[Crossref]

2006 (1)

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Alam, M. A.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Schockley-Queisser limit,” IEEE J. Photovol. 3(2), 737–744 (2013).
[Crossref]

Alemu, D.

D. Alemu, H. Y. Wei, K. H. Ho, and C. W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells,” Energy Environ. Sci. 5(11), 9662–9671 (2012).
[Crossref]

Avasthi, S.

S. Avasthi, S. Lee, Y. L. Loo, and J. C. Sturm, “Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells,” Adv. Mater. 23(48), 5762–5766 (2011).
[Crossref] [PubMed]

Bao, Z.

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Bermel, P.

Bi, H.

H. Bi and R. R. Lapierre, “A GaAs nanowire/P3HT hybrid photovoltaic device,” Nanotechnology 20(46), 465205 (2009).
[Crossref] [PubMed]

Brongersma, M. L.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Chang, S. F.

J. Y. Chen, M. H. Yu, S. F. Chang, and K. W. Sun, “Highly efficient poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structures,” Appl. Phys. Lett. 103(13), 133901 (2013).
[Crossref]

Chao, J. J.

J. J. Chao, S. C. Shiu, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells,” Nanotechnology 21(28), 285203 (2010).
[Crossref] [PubMed]

Chen, E. C.

T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Chen, J. Y.

J. Y. Chen, M. H. Yu, S. F. Chang, and K. W. Sun, “Highly efficient poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structures,” Appl. Phys. Lett. 103(13), 133901 (2013).
[Crossref]

J. Y. Chen, C. Con, M. H. Yu, B. Cui, and K. W. Sun, “Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface,” ACS Appl. Mater. Interfaces 5(15), 7552–7558 (2013).
[Crossref] [PubMed]

Chen, T. G.

T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Choulis, S. A.

A. Savva, E. Georgiou, G. Papazoglou, A. Z. Chrusou, K. Kapnisis, and S. A. Choulis, “Photovoltaics analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 132, 507–514 (2015).
[Crossref]

Chrusou, A. Z.

A. Savva, E. Georgiou, G. Papazoglou, A. Z. Chrusou, K. Kapnisis, and S. A. Choulis, “Photovoltaics analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 132, 507–514 (2015).
[Crossref]

Chu, C. W.

D. Alemu, H. Y. Wei, K. H. Ho, and C. W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells,” Energy Environ. Sci. 5(11), 9662–9671 (2012).
[Crossref]

Con, C.

J. Y. Chen, C. Con, M. H. Yu, B. Cui, and K. W. Sun, “Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface,” ACS Appl. Mater. Interfaces 5(15), 7552–7558 (2013).
[Crossref] [PubMed]

Cui, B.

J. Y. Chen, C. Con, M. H. Yu, B. Cui, and K. W. Sun, “Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface,” ACS Appl. Mater. Interfaces 5(15), 7552–7558 (2013).
[Crossref] [PubMed]

Cui, Y.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

de Kok, M. M.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Org. Electron. 9(5), 727–734 (2008).
[Crossref]

Droz, C.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

El-Kady, M.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Fan, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Garnett, E. C.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Georgiou, E.

A. Savva, E. Georgiou, G. Papazoglou, A. Z. Chrusou, K. Kapnisis, and S. A. Choulis, “Photovoltaics analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 132, 507–514 (2015).
[Crossref]

Gotou, T.

M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate): grapheme oxide composite heterojunction solar cells,” Appl. Phys. Express 5(3), 032301 (2012).
[Crossref]

Gray, J. L.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Schockley-Queisser limit,” IEEE J. Photovol. 3(2), 737–744 (2013).
[Crossref]

Ho, K. H.

D. Alemu, H. Y. Wei, K. H. Ho, and C. W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells,” Energy Environ. Sci. 5(11), 9662–9671 (2012).
[Crossref]

Huang, B. Y.

T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Huffaker, D. L.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Hung, C. H.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Hung, S. C.

J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells,” Nanotechnology 21(28), 285203 (2010).
[Crossref] [PubMed]

Ishikawa, R.

M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate): grapheme oxide composite heterojunction solar cells,” Appl. Phys. Express 5(3), 032301 (2012).
[Crossref]

Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, “Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100(18), 183901 (2012).
[Crossref]

Jang, J.

A. Kanwat and J. Jang, “Extremely stable organic photovoltaic incorporated with WOx doped PEDOT:PSS anode buffer layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 901–907 (2014).
[Crossref]

Janssen, R. A. J.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Org. Electron. 9(5), 727–734 (2008).
[Crossref]

Jeong, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Kaner, R. B.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Kanwat, A.

A. Kanwat and J. Jang, “Extremely stable organic photovoltaic incorporated with WOx doped PEDOT:PSS anode buffer layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 901–907 (2014).
[Crossref]

Kapnisis, K.

A. Savva, E. Georgiou, G. Papazoglou, A. Z. Chrusou, K. Kapnisis, and S. A. Choulis, “Photovoltaics analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 132, 507–514 (2015).
[Crossref]

Kemerink, M.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Org. Electron. 9(5), 727–734 (2008).
[Crossref]

Khan, M. R.

X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
[Crossref]

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Schockley-Queisser limit,” IEEE J. Photovol. 3(2), 737–744 (2013).
[Crossref]

Kurtz, S. R.

E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “The opto-electronic physics that broke the efficiency limit in solar cells,” 38th IEEE Photovoltic Specialists Conference (PVSC), 001556–001559 (2012).
[Crossref]

Laghumavarapu, R. B.

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Lapierre, R. R.

H. Bi and R. R. Lapierre, “A GaAs nanowire/P3HT hybrid photovoltaic device,” Nanotechnology 20(46), 465205 (2009).
[Crossref] [PubMed]

Lech, A.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Lee, S.

S. Avasthi, S. Lee, Y. L. Loo, and J. C. Sturm, “Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells,” Adv. Mater. 23(48), 5762–5766 (2011).
[Crossref] [PubMed]

F. Zhang, B. Sun, T. Song, X. Zhu, and S. Lee, “Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Lee, S. T.

Y. Zhu, T. Song, F. Zhang, S. T. Lee, and B. Sun, “Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential,” Appl. Phys. Lett. 102(11), 113504 (2013).
[Crossref]

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

Lin, A.

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Lin, C. F.

J. J. Chao, S. C. Shiu, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells,” Nanotechnology 21(28), 285203 (2010).
[Crossref] [PubMed]

Lipomi, D. J.

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Liu, D.

F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, “Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5(11), 4678–4684 (2013).
[Crossref] [PubMed]

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, “Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100(18), 183901 (2012).
[Crossref]

Loo, Y. L.

S. Avasthi, S. Lee, Y. L. Loo, and J. C. Sturm, “Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells,” Adv. Mater. 23(48), 5762–5766 (2011).
[Crossref] [PubMed]

Lundstrom, M.

Lundstrom, M. S.

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Schockley-Queisser limit,” IEEE J. Photovol. 3(2), 737–744 (2013).
[Crossref]

Mariani, G.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Maturova, K.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Org. Electron. 9(5), 727–734 (2008).
[Crossref]

McGehee, M. D.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Meillaud, F.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Meng, H. F.

T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Miazza, C.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Miller, O. D.

E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “The opto-electronic physics that broke the efficiency limit in solar cells,” 38th IEEE Photovoltic Specialists Conference (PVSC), 001556–001559 (2012).
[Crossref]

Nardes, A. M.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Org. Electron. 9(5), 727–734 (2008).
[Crossref]

Ono, M.

Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, “Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100(18), 183901 (2012).
[Crossref]

M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate): grapheme oxide composite heterojunction solar cells,” Appl. Phys. Express 5(3), 032301 (2012).
[Crossref]

Papazoglou, G.

A. Savva, E. Georgiou, G. Papazoglou, A. Z. Chrusou, K. Kapnisis, and S. A. Choulis, “Photovoltaics analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 132, 507–514 (2015).
[Crossref]

Prikhodko, S.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Savva, A.

A. Savva, E. Georgiou, G. Papazoglou, A. Z. Chrusou, K. Kapnisis, and S. A. Choulis, “Photovoltaics analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 132, 507–514 (2015).
[Crossref]

Schwartz, B. J.

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Senanayake, P.

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Shah, A.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Shapiro, J.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Shen, X.

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

Shirai, H.

M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate): grapheme oxide composite heterojunction solar cells,” Appl. Phys. Express 5(3), 032301 (2012).
[Crossref]

Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, “Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100(18), 183901 (2012).
[Crossref]

Shiu, S. C.

J. J. Chao, S. C. Shiu, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells,” Nanotechnology 21(28), 285203 (2010).
[Crossref] [PubMed]

Song, T.

Y. Zhu, T. Song, F. Zhang, S. T. Lee, and B. Sun, “Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential,” Appl. Phys. Lett. 102(11), 113504 (2013).
[Crossref]

F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, “Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5(11), 4678–4684 (2013).
[Crossref] [PubMed]

F. Zhang, B. Sun, T. Song, X. Zhu, and S. Lee, “Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Sturm, J. C.

S. Avasthi, S. Lee, Y. L. Loo, and J. C. Sturm, “Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells,” Adv. Mater. 23(48), 5762–5766 (2011).
[Crossref] [PubMed]

Sun, B.

F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, “Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5(11), 4678–4684 (2013).
[Crossref] [PubMed]

Y. Zhu, T. Song, F. Zhang, S. T. Lee, and B. Sun, “Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential,” Appl. Phys. Lett. 102(11), 113504 (2013).
[Crossref]

J. Zhang, Y. Zhang, F. Zhang, and B. Sun, “Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate),” Appl. Phys. Lett. 102(1), 013501 (2013).
[Crossref]

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

F. Zhang, B. Sun, T. Song, X. Zhu, and S. Lee, “Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Sun, K. W.

J. Y. Chen, C. Con, M. H. Yu, B. Cui, and K. W. Sun, “Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface,” ACS Appl. Mater. Interfaces 5(15), 7552–7558 (2013).
[Crossref] [PubMed]

J. Y. Chen, M. H. Yu, S. F. Chang, and K. W. Sun, “Highly efficient poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structures,” Appl. Phys. Lett. 103(13), 133901 (2013).
[Crossref]

Tang, Z.

M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate): grapheme oxide composite heterojunction solar cells,” Appl. Phys. Express 5(3), 032301 (2012).
[Crossref]

Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, “Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100(18), 183901 (2012).
[Crossref]

Tremolet de Villers, B.

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

Ueno, K.

M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate): grapheme oxide composite heterojunction solar cells,” Appl. Phys. Express 5(3), 032301 (2012).
[Crossref]

Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, “Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100(18), 183901 (2012).
[Crossref]

Vallat-Sauvain, E.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Vinken, E.

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Org. Electron. 9(5), 727–734 (2008).
[Crossref]

Vosgueritchian, M.

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Wang, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Wang, X.

X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
[Crossref]

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Schockley-Queisser limit,” IEEE J. Photovol. 3(2), 737–744 (2013).
[Crossref]

Wang, Y.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Wei, H.

F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, “Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5(11), 4678–4684 (2013).
[Crossref] [PubMed]

Wei, H. Y.

D. Alemu, H. Y. Wei, K. H. Ho, and C. W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells,” Energy Environ. Sci. 5(11), 9662–9671 (2012).
[Crossref]

Wong, P. S.

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “The opto-electronic physics that broke the efficiency limit in solar cells,” 38th IEEE Photovoltic Specialists Conference (PVSC), 001556–001559 (2012).
[Crossref]

Yu, M. H.

J. Y. Chen, C. Con, M. H. Yu, B. Cui, and K. W. Sun, “Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface,” ACS Appl. Mater. Interfaces 5(15), 7552–7558 (2013).
[Crossref] [PubMed]

J. Y. Chen, M. H. Yu, S. F. Chang, and K. W. Sun, “Highly efficient poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structures,” Appl. Phys. Lett. 103(13), 133901 (2013).
[Crossref]

Yu, P.

T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Yu, Z.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, “Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5(11), 4678–4684 (2013).
[Crossref] [PubMed]

Y. Zhu, T. Song, F. Zhang, S. T. Lee, and B. Sun, “Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential,” Appl. Phys. Lett. 102(11), 113504 (2013).
[Crossref]

J. Zhang, Y. Zhang, F. Zhang, and B. Sun, “Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate),” Appl. Phys. Lett. 102(1), 013501 (2013).
[Crossref]

F. Zhang, B. Sun, T. Song, X. Zhu, and S. Lee, “Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Zhang, J.

J. Zhang, Y. Zhang, F. Zhang, and B. Sun, “Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate),” Appl. Phys. Lett. 102(1), 013501 (2013).
[Crossref]

Zhang, Y.

J. Zhang, Y. Zhang, F. Zhang, and B. Sun, “Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate),” Appl. Phys. Lett. 102(1), 013501 (2013).
[Crossref]

F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, “Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5(11), 4678–4684 (2013).
[Crossref] [PubMed]

Zhu, X.

F. Zhang, B. Sun, T. Song, X. Zhu, and S. Lee, “Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Zhu, Y.

Y. Zhu, T. Song, F. Zhang, S. T. Lee, and B. Sun, “Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential,” Appl. Phys. Lett. 102(11), 113504 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (2)

F. Zhang, D. Liu, Y. Zhang, H. Wei, T. Song, and B. Sun, “Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5(11), 4678–4684 (2013).
[Crossref] [PubMed]

J. Y. Chen, C. Con, M. H. Yu, B. Cui, and K. W. Sun, “Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface,” ACS Appl. Mater. Interfaces 5(15), 7552–7558 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

M. Vosgueritchian, D. J. Lipomi, and Z. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Adv. Mater. (1)

S. Avasthi, S. Lee, Y. L. Loo, and J. C. Sturm, “Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells,” Adv. Mater. 23(48), 5762–5766 (2011).
[Crossref] [PubMed]

Appl. Phys. Express (1)

M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, and H. Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate): grapheme oxide composite heterojunction solar cells,” Appl. Phys. Express 5(3), 032301 (2012).
[Crossref]

Appl. Phys. Lett. (6)

T. G. Chen, B. Y. Huang, E. C. Chen, P. Yu, and H. F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Q. Liu, M. Ono, Z. Tang, R. Ishikawa, K. Ueno, and H. Shirai, “Highly efficient crystalline silicon/zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100(18), 183901 (2012).
[Crossref]

Y. Zhu, T. Song, F. Zhang, S. T. Lee, and B. Sun, “Efficient organic-inorganic hybrid Schottky solar cell: the role of built-in potential,” Appl. Phys. Lett. 102(11), 113504 (2013).
[Crossref]

J. Y. Chen, M. H. Yu, S. F. Chang, and K. W. Sun, “Highly efficient poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structures,” Appl. Phys. Lett. 103(13), 133901 (2013).
[Crossref]

G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, “Hybrid conjugated polymer solar cells using patterned GaAs nanopillers,” Appl. Phys. Lett. 97(1), 013107 (2010).
[Crossref]

J. Zhang, Y. Zhang, F. Zhang, and B. Sun, “Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate),” Appl. Phys. Lett. 102(1), 013501 (2013).
[Crossref]

Chem. Mater. (1)

F. Zhang, B. Sun, T. Song, X. Zhu, and S. Lee, “Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures,” Chem. Mater. 23(8), 2084–2090 (2011).
[Crossref]

Energy Environ. Sci. (1)

D. Alemu, H. Y. Wei, K. H. Ho, and C. W. Chu, “Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells,” Energy Environ. Sci. 5(11), 9662–9671 (2012).
[Crossref]

IEEE J. Photovol. (1)

X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the Schockley-Queisser limit,” IEEE J. Photovol. 3(2), 737–744 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

X. Shen, B. Sun, D. Liu, and S. T. Lee, “Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture,” J. Am. Chem. Soc. 133(48), 19408–19415 (2011).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

A. Kanwat and J. Jang, “Extremely stable organic photovoltaic incorporated with WOx doped PEDOT:PSS anode buffer layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 901–907 (2014).
[Crossref]

Nano Lett. (2)

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

G. Mariani, Y. Wang, P. S. Wong, A. Lech, C. H. Hung, J. Shapiro, S. Prikhodko, M. El-Kady, R. B. Kaner, and D. L. Huffaker, “Three-dimensional core-shell hybrid solar cells via controlled in situ materials engineering,” Nano Lett. 12(7), 3581–3586 (2012).
[Crossref] [PubMed]

Nanotechnology (2)

H. Bi and R. R. Lapierre, “A GaAs nanowire/P3HT hybrid photovoltaic device,” Nanotechnology 20(46), 465205 (2009).
[Crossref] [PubMed]

J. J. Chao, S. C. Shiu, S. C. Hung, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells,” Nanotechnology 21(28), 285203 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Org. Electron. (1)

A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Org. Electron. 9(5), 727–734 (2008).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

A. Savva, E. Georgiou, G. Papazoglou, A. Z. Chrusou, K. Kapnisis, and S. A. Choulis, “Photovoltaics analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 132, 507–514 (2015).
[Crossref]

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

J. J. Chao, S. C. Shiu, and C. F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

Other (2)

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in 37th IEEE Photovoltaic Specialists Conference (PVSC, 2011), pp. 000004–000008.
[Crossref]

E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “The opto-electronic physics that broke the efficiency limit in solar cells,” 38th IEEE Photovoltic Specialists Conference (PVSC), 001556–001559 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Calculated energy band diagram of the solar cell device with back-surface field structure. The inset shows the schematic of sample C. (b) Optical image of the device with an active area of ~1cm2.
Fig. 2
Fig. 2 (a) Reflectance spectra of GaAs with and without PEDOT:PSS layer. (b) Current density-voltage characteristics of devices A and B with different substrate background doping densities. The calculated depletion width W as a function of the doping concentration in the substrate is shown in the inset.
Fig. 3
Fig. 3 External quantum efficiency (EQE) spectra of the devices A and B.
Fig. 4
Fig. 4 Current density – voltage (J-V) characteristics of devices B (without FSF/BSF), C (BSF-only) and D (FSF/BSF).
Fig. 5
Fig. 5 (a) I-V characteristic (log scale) of the device made by directly depositing a metal contact on sample D under dark and light (AM1.5) conditions. The inset shows the I-V curve of dark condition in linear scale. (b) The photovoltaic characteristics of the device in (a).
Fig. 6
Fig. 6 (a) External quantum efficiency (EQE) and reflectance spectra (b) IQE spectra of the hybrid solar cells B, C and D.
Fig. 7
Fig. 7 Current density – voltage (J-V) characteristics of device D (FSF/BSF) with MeOH- and Zonyl-treated PEDOT:PSS layer. J-V curve of the device without treatment is also displayed in parallel for comparison.

Tables (2)

Tables Icon

Table 1 Parameters of GaAs wafers used for organic/inorganic solar cell fabrication.

Tables Icon

Table 2 Performances of PEDOT:PSS/GaAs hybrid solar cell.

Metrics