Abstract

The optimal morphology of nanotextured interfaces, which increase the photocurrent density of thin-film solar cells, is still an open question. While random morphologies have the advantage to scatter light into a broad angular range, they are more difficult to assess with Maxwell solvers, such as the finite-element method (FEM). With this study we aim to identify necessary requirements on the unit cell design for the accurate simulation of nanotextured thin-film solar cells with FEM.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulations of sinusoidal nanotextures for coupling light into c-Si thin-film solar cells

Klaus Jäger, Carlo Barth, Martin Hammerschmidt, Sven Herrmann, Sven Burger, Frank Schmidt, and Christiane Becker
Opt. Express 24(6) A569-A580 (2016)

Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies

Vladislav Jovanov, Ujwol Palanchoke, Philipp Magnus, Helmut Stiebig, Jürgen Hüpkes, Porponth Sichanugrist, Makoto Konagai, Samuel Wiesendanger, Carsten Rockstuhl, and Dietmar Knipp
Opt. Express 21(S4) A595-A606 (2013)

Designing optimized nano textures for thin-film silicon solar cells

Klaus Jäger, Marinus Fischer, René A.C.M.M. van Swaaij, and Miro Zeman
Opt. Express 21(S4) A656-A668 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
    [Crossref]
  2. M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
    [Crossref]
  3. C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
    [Crossref]
  4. D. Amkreutz, J. Haschke, T. Häring, F. Ruske, and B. Rech, “Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass,” Sol. Energ. Mat. Sol. C. 123, 13–16 (2014).
    [Crossref]
  5. J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energ. Mat. Sol. C. 128, 190–197 (2014).
    [Crossref]
  6. C. Becker, V. Preidel, D. Amkreutz, J. Haschke, and B. Rech, “Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass,” Sol. Energ. Mat. Sol. C. 135, 2–7 (2015).
    [Crossref]
  7. A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
    [Crossref]
  8. O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 22, 671–689 (2014).
    [Crossref]
  9. O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).
  10. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
    [Crossref]
  11. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [Crossref] [PubMed]
  12. J. Xavier, J. Probst, F. Back, P. Wyss, D. Eisenhauer, B. Löchel, E. Rudigier-Voigt, and C. Becker, “Quasicrystalline-structured light harvesting nanophotonic silicon films on nanoimprinted glass for ultra-thin photovoltaics,” Opt. Mater. Express 4, 2290–2299 (2014).
    [Crossref]
  13. K. Jäger and M. Zeman, “A scattering model for surface-textured thin films,” Appl. Phys. Lett. 95, 171108 (2009).
    [Crossref]
  14. D. Dominé, F.-J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
    [Crossref]
  15. K. Bittkau, M. Schulte, M. Klein, T. Beckers, and R. Carius, “Modeling of light scattering properties from surface profile in thin-film solar cells by fourier transform techniques,” Thin Solid Films 519, 6538–6543 (2011).
    [Crossref]
  16. M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett. 99, 111107 (2011).
    [Crossref]
  17. K. Bittkau, W. Bottler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111, 083101 (2012).
    [Crossref]
  18. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
    [Crossref]
  19. K. Bittkau and A. Hoffmann, “Optical simulation of photonic random textures for thin-film solar cells,” Proc. SPIE 9140, 91400L (2014).
    [Crossref]
  20. J. Jin, The Finite Element Method in Electromagnetics(John Wiley & Sons, 2002).
  21. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966).
    [Crossref]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  23. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015).
    [Crossref]
  24. B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99, 113512 (2011).
    [Crossref]
  25. Photovoltaic Report (Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, 2014). http://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-englisch/photovoltaics-report-slides.pdf .
  26. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cells,” Appl. Phys. Lett. 28, 671–673 (1976).
    [Crossref]
  27. K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287–296 (1985).
    [Crossref]
  28. K. Perlin, “Better acting in computer games: the use of procedural methods,” Comput. Graph. 26, 3–11 (2002).
    [Crossref]
  29. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
    [Crossref] [PubMed]
  30. K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Optimized nano-textured interfaces for thin-film silicon solar cells: identifying the limit of randomly textured interfaces,” Proc. SPIE 9140, 91400M (2014).
    [Crossref]
  31. F. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66, 51–83 (1978).
    [Crossref]
  32. H. Tan, P. Babal, M. Zeman, and A. H. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energ. Mat. Sol. C. 132, 597–605 (2015).
    [Crossref]
  33. P. DelliVeneri, L. V. Mercaldo, and I. Usatii, “Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells,” Appl. Phys. Lett. 97, 023512 (2010).
    [Crossref]
  34. M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
    [Crossref]
  35. V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
    [Crossref]
  36. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).
  37. J. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520, 1096–1101 (2011).
    [Crossref]
  38. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).

2015 (4)

M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
[Crossref]

C. Becker, V. Preidel, D. Amkreutz, J. Haschke, and B. Rech, “Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass,” Sol. Energ. Mat. Sol. C. 135, 2–7 (2015).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015).
[Crossref]

H. Tan, P. Babal, M. Zeman, and A. H. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energ. Mat. Sol. C. 132, 597–605 (2015).
[Crossref]

2014 (6)

J. Xavier, J. Probst, F. Back, P. Wyss, D. Eisenhauer, B. Löchel, E. Rudigier-Voigt, and C. Becker, “Quasicrystalline-structured light harvesting nanophotonic silicon films on nanoimprinted glass for ultra-thin photovoltaics,” Opt. Mater. Express 4, 2290–2299 (2014).
[Crossref]

K. Bittkau and A. Hoffmann, “Optical simulation of photonic random textures for thin-film solar cells,” Proc. SPIE 9140, 91400L (2014).
[Crossref]

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Optimized nano-textured interfaces for thin-film silicon solar cells: identifying the limit of randomly textured interfaces,” Proc. SPIE 9140, 91400M (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 22, 671–689 (2014).
[Crossref]

D. Amkreutz, J. Haschke, T. Häring, F. Ruske, and B. Rech, “Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass,” Sol. Energ. Mat. Sol. C. 123, 13–16 (2014).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energ. Mat. Sol. C. 128, 190–197 (2014).
[Crossref]

2013 (4)

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[Crossref] [PubMed]

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
[Crossref]

2012 (3)

K. Bittkau, W. Bottler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111, 083101 (2012).
[Crossref]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[Crossref]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

2011 (4)

K. Bittkau, M. Schulte, M. Klein, T. Beckers, and R. Carius, “Modeling of light scattering properties from surface profile in thin-film solar cells by fourier transform techniques,” Thin Solid Films 519, 6538–6543 (2011).
[Crossref]

M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett. 99, 111107 (2011).
[Crossref]

J. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520, 1096–1101 (2011).
[Crossref]

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99, 113512 (2011).
[Crossref]

2010 (4)

P. DelliVeneri, L. V. Mercaldo, and I. Usatii, “Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells,” Appl. Phys. Lett. 97, 023512 (2010).
[Crossref]

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

D. Dominé, F.-J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[Crossref]

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

2009 (1)

K. Jäger and M. Zeman, “A scattering model for surface-textured thin films,” Appl. Phys. Lett. 95, 171108 (2009).
[Crossref]

2002 (1)

K. Perlin, “Better acting in computer games: the use of procedural methods,” Comput. Graph. 26, 3–11 (2002).
[Crossref]

1992 (1)

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

1985 (1)

K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287–296 (1985).
[Crossref]

1983 (1)

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

1978 (1)

F. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66, 51–83 (1978).
[Crossref]

1976 (1)

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cells,” Appl. Phys. Lett. 28, 671–673 (1976).
[Crossref]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966).
[Crossref]

Adachi, K.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Amkreutz, D.

C. Becker, V. Preidel, D. Amkreutz, J. Haschke, and B. Rech, “Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass,” Sol. Energ. Mat. Sol. C. 135, 2–7 (2015).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energ. Mat. Sol. C. 128, 190–197 (2014).
[Crossref]

D. Amkreutz, J. Haschke, T. Häring, F. Ruske, and B. Rech, “Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass,” Sol. Energ. Mat. Sol. C. 123, 13–16 (2014).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Babal, P.

H. Tan, P. Babal, M. Zeman, and A. H. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energ. Mat. Sol. C. 132, 597–605 (2015).
[Crossref]

Back, F.

Ballif, C.

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

D. Dominé, F.-J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[Crossref]

Battaglia, C.

D. Dominé, F.-J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[Crossref]

Becker, C.

C. Becker, V. Preidel, D. Amkreutz, J. Haschke, and B. Rech, “Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass,” Sol. Energ. Mat. Sol. C. 135, 2–7 (2015).
[Crossref]

J. Xavier, J. Probst, F. Back, P. Wyss, D. Eisenhauer, B. Löchel, E. Rudigier-Voigt, and C. Becker, “Quasicrystalline-structured light harvesting nanophotonic silicon films on nanoimprinted glass for ultra-thin photovoltaics,” Opt. Mater. Express 4, 2290–2299 (2014).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Beckers, T.

K. Bittkau, M. Schulte, M. Klein, T. Beckers, and R. Carius, “Modeling of light scattering properties from surface profile in thin-film solar cells by fourier transform techniques,” Thin Solid Films 519, 6538–6543 (2011).
[Crossref]

Billet, A.

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

Bittkau, K.

K. Bittkau and A. Hoffmann, “Optical simulation of photonic random textures for thin-film solar cells,” Proc. SPIE 9140, 91400L (2014).
[Crossref]

K. Bittkau, W. Bottler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111, 083101 (2012).
[Crossref]

M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett. 99, 111107 (2011).
[Crossref]

K. Bittkau, M. Schulte, M. Klein, T. Beckers, and R. Carius, “Modeling of light scattering properties from surface profile in thin-film solar cells by fourier transform techniques,” Thin Solid Films 519, 6538–6543 (2011).
[Crossref]

Borg, H.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).

Bottler, W.

K. Bittkau, W. Bottler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111, 083101 (2012).
[Crossref]

Bugnon, G.

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

Campa, A.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).

Carius, R.

K. Bittkau, M. Schulte, M. Klein, T. Beckers, and R. Carius, “Modeling of light scattering properties from surface profile in thin-film solar cells by fourier transform techniques,” Thin Solid Films 519, 6538–6543 (2011).
[Crossref]

Carlson, D. E.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cells,” Appl. Phys. Lett. 28, 671–673 (1976).
[Crossref]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Cuony, P.

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

Dalibor, T.

M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
[Crossref]

Damiano, A.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
[Crossref]

Deckman, H. W.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

DelliVeneri, P.

P. DelliVeneri, L. V. Mercaldo, and I. Usatii, “Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells,” Appl. Phys. Lett. 97, 023512 (2010).
[Crossref]

Demontis, V.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
[Crossref]

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Despeisse, M.

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

Dominé, D.

D. Dominé, F.-J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[Crossref]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015).
[Crossref]

Eisenhauer, D.

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015).
[Crossref]

Eraerds, P.

M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
[Crossref]

Ermes, M.

K. Bittkau, W. Bottler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111, 083101 (2012).
[Crossref]

M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett. 99, 111107 (2011).
[Crossref]

Feltrin, A.

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

Finger, F.

K. Bittkau, W. Bottler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111, 083101 (2012).
[Crossref]

Fischer, M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[Crossref] [PubMed]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[Crossref]

Franken, R. H.

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).

Gotoh, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015).
[Crossref]

Guha, S.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99, 113512 (2011).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Häring, T.

D. Amkreutz, J. Haschke, T. Häring, F. Ruske, and B. Rech, “Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass,” Sol. Energ. Mat. Sol. C. 123, 13–16 (2014).
[Crossref]

Harris, F.

F. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66, 51–83 (1978).
[Crossref]

Haschke, J.

C. Becker, V. Preidel, D. Amkreutz, J. Haschke, and B. Rech, “Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass,” Sol. Energ. Mat. Sol. C. 135, 2–7 (2015).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energ. Mat. Sol. C. 128, 190–197 (2014).
[Crossref]

D. Amkreutz, J. Haschke, T. Häring, F. Ruske, and B. Rech, “Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass,” Sol. Energ. Mat. Sol. C. 123, 13–16 (2014).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Haug, F.-J.

D. Dominé, F.-J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[Crossref]

Hayashi, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Heijna, M. C. R.

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015).
[Crossref]

Hoffmann, A.

K. Bittkau and A. Hoffmann, “Optical simulation of photonic random textures for thin-film solar cells,” Proc. SPIE 9140, 91400L (2014).
[Crossref]

Isabella, O.

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Optimized nano-textured interfaces for thin-film silicon solar cells: identifying the limit of randomly textured interfaces,” Proc. SPIE 9140, 91400M (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 22, 671–689 (2014).
[Crossref]

J. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520, 1096–1101 (2011).
[Crossref]

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).

Jäger, K.

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Optimized nano-textured interfaces for thin-film silicon solar cells: identifying the limit of randomly textured interfaces,” Proc. SPIE 9140, 91400M (2014).
[Crossref]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[Crossref] [PubMed]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[Crossref]

M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett. 99, 111107 (2011).
[Crossref]

J. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520, 1096–1101 (2011).
[Crossref]

K. Jäger and M. Zeman, “A scattering model for surface-textured thin films,” Appl. Phys. Lett. 95, 171108 (2009).
[Crossref]

Jiang, C.-S.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99, 113512 (2011).
[Crossref]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics(John Wiley & Sons, 2002).

Jogschies, L.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Klein, M.

K. Bittkau, M. Schulte, M. Klein, T. Beckers, and R. Carius, “Modeling of light scattering properties from surface profile in thin-film solar cells by fourier transform techniques,” Thin Solid Films 519, 6538–6543 (2011).
[Crossref]

Klimm, C.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Kondo, M.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 22, 671–689 (2014).
[Crossref]

Korte, L.

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energ. Mat. Sol. C. 128, 190–197 (2014).
[Crossref]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Krc, J.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Linssen, D. N. P.

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Optimized nano-textured interfaces for thin-film silicon solar cells: identifying the limit of randomly textured interfaces,” Proc. SPIE 9140, 91400M (2014).
[Crossref]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Löchel, B.

Lockau, D.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Meillaud, F.

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

Melskens, J.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
[Crossref]

Mercaldo, L. V.

P. DelliVeneri, L. V. Mercaldo, and I. Usatii, “Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells,” Appl. Phys. Lett. 97, 023512 (2010).
[Crossref]

Merkel, J.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Nishimura, N.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Palm, J.

M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
[Crossref]

Parisi, J.

M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
[Crossref]

Peeters, P.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

Perlin, K.

K. Perlin, “Better acting in computer games: the use of procedural methods,” Comput. Graph. 26, 3–11 (2002).
[Crossref]

K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287–296 (1985).
[Crossref]

Pieters, B. E.

M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett. 99, 111107 (2011).
[Crossref]

Plocica, P.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Preidel, V.

C. Becker, V. Preidel, D. Amkreutz, J. Haschke, and B. Rech, “Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass,” Sol. Energ. Mat. Sol. C. 135, 2–7 (2015).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Probst, J.

Rech, B.

C. Becker, V. Preidel, D. Amkreutz, J. Haschke, and B. Rech, “Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass,” Sol. Energ. Mat. Sol. C. 135, 2–7 (2015).
[Crossref]

D. Amkreutz, J. Haschke, T. Häring, F. Ruske, and B. Rech, “Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass,” Sol. Energ. Mat. Sol. C. 123, 13–16 (2014).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energ. Mat. Sol. C. 128, 190–197 (2014).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Richter, M.

M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
[Crossref]

Riedel, I.

M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
[Crossref]

Rudigier-Voigt, E.

Ruske, F.

D. Amkreutz, J. Haschke, T. Häring, F. Ruske, and B. Rech, “Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass,” Sol. Energ. Mat. Sol. C. 123, 13–16 (2014).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energ. Mat. Sol. C. 128, 190–197 (2014).
[Crossref]

Sai, H.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 22, 671–689 (2014).
[Crossref]

Sanna, C.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
[Crossref]

Santbergen, R.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
[Crossref]

Sap, J.

J. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520, 1096–1101 (2011).
[Crossref]

Sato, K.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Schubbert, C.

M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
[Crossref]

Schulte, M.

M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett. 99, 111107 (2011).
[Crossref]

K. Bittkau, M. Schulte, M. Klein, T. Beckers, and R. Carius, “Modeling of light scattering properties from surface profile in thin-film solar cells by fourier transform techniques,” Thin Solid Films 519, 6538–6543 (2011).
[Crossref]

Sivec, L.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99, 113512 (2011).
[Crossref]

Smets, A. H.

H. Tan, P. Babal, M. Zeman, and A. H. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energ. Mat. Sol. C. 132, 597–605 (2015).
[Crossref]

Smets, A. H. M.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
[Crossref]

Smirnov, V.

K. Bittkau, W. Bottler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111, 083101 (2012).
[Crossref]

Sontheimer, T.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Soppe, W.

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).

Steffens, S.

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

Stueckelberger, M.

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tan, H.

H. Tan, P. Babal, M. Zeman, and A. H. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energ. Mat. Sol. C. 132, 597–605 (2015).
[Crossref]

Topic, M.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

Usatii, I.

P. DelliVeneri, L. V. Mercaldo, and I. Usatii, “Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells,” Appl. Phys. Lett. 97, 023512 (2010).
[Crossref]

van Erven, R.

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).

van Swaaij, R. A. C. M. M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[Crossref] [PubMed]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[Crossref]

Wakayama, Y.

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015).
[Crossref]

Witzke, H.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

Wronski, C. R.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cells,” Appl. Phys. Lett. 28, 671–673 (1976).
[Crossref]

Wyss, P.

Xavier, J.

Yablonovitch, E.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

Yan, B.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99, 113512 (2011).
[Crossref]

Yang, J.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99, 113512 (2011).
[Crossref]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966).
[Crossref]

Yue, G.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99, 113512 (2011).
[Crossref]

Zeman, M.

H. Tan, P. Babal, M. Zeman, and A. H. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energ. Mat. Sol. C. 132, 597–605 (2015).
[Crossref]

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Optimized nano-textured interfaces for thin-film silicon solar cells: identifying the limit of randomly textured interfaces,” Proc. SPIE 9140, 91400M (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 22, 671–689 (2014).
[Crossref]

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
[Crossref]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013).
[Crossref] [PubMed]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[Crossref]

M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett. 99, 111107 (2011).
[Crossref]

J. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520, 1096–1101 (2011).
[Crossref]

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

K. Jäger and M. Zeman, “A scattering model for surface-textured thin films,” Appl. Phys. Lett. 95, 171108 (2009).
[Crossref]

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Appl. Phys. Lett. (7)

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

M. Schulte, K. Bittkau, K. Jäger, M. Ermes, M. Zeman, and B. E. Pieters, “Angular resolved scattering by a nano-textured ZnO/silicon interface,” Appl. Phys. Lett. 99, 111107 (2011).
[Crossref]

K. Jäger and M. Zeman, “A scattering model for surface-textured thin films,” Appl. Phys. Lett. 95, 171108 (2009).
[Crossref]

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99, 113512 (2011).
[Crossref]

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cells,” Appl. Phys. Lett. 28, 671–673 (1976).
[Crossref]

P. DelliVeneri, L. V. Mercaldo, and I. Usatii, “Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells,” Appl. Phys. Lett. 97, 023512 (2010).
[Crossref]

M. Despeisse, G. Bugnon, A. Feltrin, M. Stueckelberger, P. Cuony, F. Meillaud, A. Billet, and C. Ballif, “Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate,” Appl. Phys. Lett. 96, 073507 (2010).
[Crossref]

Comput. Graph. (1)

K. Perlin, “Better acting in computer games: the use of procedural methods,” Comput. Graph. 26, 3–11 (2002).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966).
[Crossref]

J. Appl. Phys. (4)

D. Dominé, F.-J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[Crossref]

K. Bittkau, W. Bottler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111, 083101 (2012).
[Crossref]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[Crossref]

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113, 064508 (2013).
[Crossref]

Nat. Commun. (1)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
[Crossref]

Phys. Status Solidi A (1)

M. Richter, I. Riedel, C. Schubbert, P. Eraerds, J. Parisi, T. Dalibor, and J. Palm, “Simulation study of the impact of interface roughness and void inclusions on Cu(In,Ga)(Se,S)2 solar cells,” Phys. Status Solidi A 212, 298–306 (2015).
[Crossref]

Proc. IEEE (1)

F. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66, 51–83 (1978).
[Crossref]

Proc. SPIE (2)

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Optimized nano-textured interfaces for thin-film silicon solar cells: identifying the limit of randomly textured interfaces,” Proc. SPIE 9140, 91400M (2014).
[Crossref]

K. Bittkau and A. Hoffmann, “Optical simulation of photonic random textures for thin-film solar cells,” Proc. SPIE 9140, 91400L (2014).
[Crossref]

Prog. Photovolt: Res. Appl. (3)

A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovolt: Res. Appl. 18, 160–167 (2010).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt: Res. Appl. 22, 671–689 (2014).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 45),” Prog. Photovolt: Res. Appl. 23, 1–9 (2015).
[Crossref]

Rep. Res. Lab., Asahi Glass Co. Ltd. (1)

K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and N. Nishimura, “Highly Textured SnO2:F TCO Films for a-Si Solar Cells,” Rep. Res. Lab., Asahi Glass Co. Ltd. 42, 129–137 (1992).

SIGGRAPH Comput. Graph. (1)

K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287–296 (1985).
[Crossref]

Sol. Energ. Mat. Sol. C. (5)

H. Tan, P. Babal, M. Zeman, and A. H. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energ. Mat. Sol. C. 132, 597–605 (2015).
[Crossref]

C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, and B. Rech, “Polycrystalline silicon thin-film solar cells: Status and perspectives,” Sol. Energ. Mat. Sol. C. 119, 112–123 (2013).
[Crossref]

D. Amkreutz, J. Haschke, T. Häring, F. Ruske, and B. Rech, “Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass,” Sol. Energ. Mat. Sol. C. 123, 13–16 (2014).
[Crossref]

J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, “Towards wafer quality crystalline silicon thin-film solar cells on glass,” Sol. Energ. Mat. Sol. C. 128, 190–197 (2014).
[Crossref]

C. Becker, V. Preidel, D. Amkreutz, J. Haschke, and B. Rech, “Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass,” Sol. Energ. Mat. Sol. C. 135, 2–7 (2015).
[Crossref]

Thin Solid Films (2)

K. Bittkau, M. Schulte, M. Klein, T. Beckers, and R. Carius, “Modeling of light scattering properties from surface profile in thin-film solar cells by fourier transform techniques,” Thin Solid Films 519, 6538–6543 (2011).
[Crossref]

J. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520, 1096–1101 (2011).
[Crossref]

Other (5)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).

Photovoltaic Report (Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, 2014). http://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-englisch/photovoltaics-report-slides.pdf .

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

J. Jin, The Finite Element Method in Electromagnetics(John Wiley & Sons, 2002).

O. Isabella, A. Campa, M. C. R. Heijna, W. Soppe, R. van Erven, R. H. Franken, H. Borg, and M. Zeman, “Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells,” in “23rd European Photovoltaic Solar Energy Conference,” pp. 2320–2324 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustrating the Perlin algorithm that is used to generate random nanotextures with well-controlled lateral and vertical feature sizes [30].
Fig. 2
Fig. 2 Illustrating the generation of Perlin textures with periodic boundaries. First, applying a Tukey-window function (t1) to the original texture shown in (o), the border of the texture can be brought to a constant height (t2). Secondly, the texture can be made periodic by using the random numbers from the first row and column also in the last row and column (p1-p2) and removing the last row and column after the cosine interpolation is made (p3). The resulting texture (p4) is periodic as illustrated in (p5).
Fig. 3
Fig. 3 (a) The layer structure of the thin-film silicon solar cells used in this work. (b) An AFM scan of Asahi VU-type, which is used in Section 4.1.
Fig. 4
Fig. 4 (a) The measured external quantum efficiency (EQE) of a real solar cell and the absorption spectra of the absorber for calculations performed with the finite-element method using unit cells with three different widths and (b) the absorption profiles of FEM simulations of the real solar cell obtained with a unit cell width of 600 nm.
Fig. 5
Fig. 5 The implied photocurrent density for solar cells with Perlin textures with a constant aspect ratio of LFS : σr = 3 : 1 obtained with the finite-element method (FEM) using different unit cell widths. In (a), the unit cell used for FEM is constructed with the Tukey-window approach while in (b) it is constructed with enforced periodicity.
Fig. 6
Fig. 6 The height profiles (top) and 2D fast Fourier transform (FFT) spectra (bottom) of (a) a large Perlin texture, and the same area filled with unit cells constructed with (b) enforced periodicity and (c) the Tukey-window approach. The lateral feature size (LFS) is 240 nm; the unit cells in (b) and (c) are 5 × LFS wide. For all textures, the rms roughness is 80 nm, for the FFT images, the absolute value is shown.
Fig. 7
Fig. 7 Convergence study of Jph obtained as a function of the used unit cell width in the simulations. The simulations were performed for LFS = 120 nm and σr = 40. For width between 3×LFS and 7×LFS, the average of five simulations was taken, while for 10×LFS the average of three simulations was taken due to time constraints.

Tables (1)

Tables Icon

Table 1 The generic layer structure used in this study. The i layer thickness is 330 nm for the validation and 300 nm for the results discussed in Section 4.2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A j = 1 2 ω ε 0 ( ε ˜ j ) V j | E | 2 d V ,
J ph = e λ 1 λ 2 A abs ( λ ) Φ AM 1 . 5 ( λ ) d λ ,
w ( x ) = { 1 2 { 1 + cos [ π ( 2 x r 1 ) ] } 0 x r 2 1 r 2 x 1 r 2 1 2 { 1 + cos [ π ( 2 x r 2 r + 1 ) ] } 1 r 2 x 1

Metrics