Abstract

An innovative algorithm is developed and validated to estimate the turbidity in Zhejiang coastal area (highly turbid waters) using data from the Geostationary Ocean Color Imager (GOCI). First, satellite-ground synchronous data (n = 850) was collected from 2014 to 2015 using 11 buoys equipped with a Yellow Spring Instrument (YSI) multi-parameter sonde capable of taking hourly turbidity measurements. The GOCI data-derived Rayleigh-corrected reflectance (R rc) was used in place of the widely used remote sensing reflectance (R rs) to model turbidity. Various band characteristics, including single band, band ratio, band subtraction, and selected band combinations, were analyzed to identify correlations with turbidity. The results indicated that band 6 had the closest relationship to turbidity; however, the combined bands 3 and 6 model simulated turbidity most accurately (R 2 = 0.821, p<0.0001), while the model based on band 6 alone performed almost as well (R 2 = 0.749, p<0.0001). An independent validation data set was used to evaluate the performances of both models, and the mean relative error values of 42.5% and 51.2% were obtained for the combined model and the band 6 model, respectively. The accurate performances of the proposed models indicated that the use of R rc to model turbidity in highly turbid coastal waters is feasible. As an example, the developed model was applied to 8 hourly GOCI images on 30 December 2014. Three cross sections were selected to identify the spatiotemporal variation of turbidity in the study area. Turbidity generally decreased from near-shore to offshore and from morning to afternoon. Overall, the findings of this study provide a simple and practical method, based on GOCI data, to estimate turbidity in highly turbid coastal waters at high temporal resolutions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI)

Menghua Wang, Jae-Hyun Ahn, Lide Jiang, Wei Shi, SeungHyun Son, Young-Je Park, and Joo-Hyung Ryu
Opt. Express 21(3) 3835-3849 (2013)

A semi-analytical total suspended sediment retrieval model in turbid coastal waters: A case study in Changjiang River Estuary

Jun Chen, Eurico D'Sa, Tingwei Cui, and Xunhua Zhang
Opt. Express 21(11) 13018-13031 (2013)

Ocean color retrieval from MWI onboard the Tiangong-2 Space Lab: preliminary results

Xianqiang He, Yan Bai, Jun Wei, Jing Ding, Palanisamy Shanmugam, Difeng Wang, Qingjun Song, and Xiaoxian Huang
Opt. Express 25(20) 23955-23973 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Platt, S. Sathyendranath, C. M. Caverhill, and M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep Sea Res., Part I 35, 855–879 (1988).
  2. S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, “Remote sensing of oceanic primary production: computations using a spectral model,” Deep Sea Res., Part I 36, 431–453 (1989).
  3. S. Sathyendranath, A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, “Biological control of surface temperature in the Arabian Sea,” Nature 349(6304), 54–56 (1991).
    [Crossref]
  4. A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
    [Crossref]
  5. Y. Wu, C. C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
    [Crossref]
  6. J. Acker, C. Brown, A. Hine, E. Armstrong, and N. Kuring, “Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms,” Int. J. Remote Sens. 23(14), 2853–2868 (2002).
    [Crossref]
  7. W. Shi and M. Wang, “Three‐dimensional observations from MODIS and CALIPSO for ocean responses to cyclone Nargis in the Gulf of Martaban,” Geophys. Res. Lett. 35(21), L21603 (2008).
    [Crossref]
  8. B. Nechad, K. Ruddick, and G. Neukermans, “Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters,” in SPIE Europe Remote Sensing, (International Society for Optics and Photonics, 2009), 74730H–74730H–74712.
  9. E. Parliament, “Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive),” Off. J. Eur. Uni. L 164, 19–40 (2008).
  10. D. G. Goodin, J. A. Harrington, M. D. Nellis, and D. C. Rundquist, “Mapping Reservoir Turbidity Patterns Using SPOT‐HRV Data,” Geocarto Int. 11(4), 71–78 (1996).
    [Crossref]
  11. J. Bustamante, F. Pacios, R. Díaz-Delgado, and D. Aragonés, “Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images,” J. Environ. Manage. 90(7), 2219–2225 (2009).
    [Crossref] [PubMed]
  12. Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
    [Crossref]
  13. C. Petus, G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, “Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery,” Cont. Shelf Res. 30(5), 379–392 (2010).
    [Crossref]
  14. M. Potes, M. J. Costa, and R. Salgado, “Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling,” Hydrol. Earth Syst. Sci. 16(6), 1623–1633 (2012).
    [Crossref]
  15. S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
    [Crossref]
  16. Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
    [Crossref]
  17. J. Brajard, R. Santer, M. Crépon, and S. Thiria, “Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion,” Remote Sens. Environ. 126, 51–61 (2012).
    [Crossref]
  18. C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
    [Crossref]
  19. Z. Mao, J. Chen, Z. Hao, D. Pan, B. Tao, and Q. Zhu, “A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions,” Remote Sens. Environ. 132, 186–194 (2013).
    [Crossref]
  20. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the US: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
    [Crossref]
  21. R. J. Frouin, L. Gross-Colzy, and P.-Y. Deschamps, “Ocean color remote sensing without explicit aerosol correction,” in Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space (ISOP, 2003), pp. 133–142.
  22. L. Feng, C. Hu, X. Han, X. Chen, and L. Qi, “Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach,” Remote Sens. 7(1), 275–299 (2014).
    [Crossref]
  23. J. Zhao, M. Temimi, H. Ghedira, and C. Hu, “Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters--a case study in the Arabian Gulf,” Opt. Express 22(11), 13755–13772 (2014).
    [Crossref] [PubMed]
  24. L. Qi, C. Hu, H. Duan, J. Cannizzaro, and R. Ma, “A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations,” Remote Sens. Environ. 154, 298–317 (2014).
    [Crossref]
  25. L. Qi, C. Hu, H. Duan, Y. Zhang, and R. Ma, “Influence of Particle Composition on Remote Sensing Reflectance and MERIS Maximum Chlorophyll Index Algorithm: Examples From Taihu Lake and Chaohu Lake,” IEEE Geosci. Remote Sens. Lett. 12(6), 1170–1174 (2015).
    [Crossref]
  26. J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. Oceans (1978–2012) 117(2012).
    [Crossref]
  27. D. Yang, B. Yin, J. Sun, and Y. Zhang, “Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer,” J. Mar. Syst. 123-124, 1–18 (2013).
    [Crossref]
  28. X. Lou and C. Hu, “Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI,” Remote Sens. Environ. 140, 562–572 (2014).
    [Crossref]
  29. J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
    [Crossref]
  30. X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
    [Crossref]
  31. M. Cong, T. Jiang, Y. Qi, H. Dong, D. Teng, and S. Lu, “Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea,” Int. J. Sediment Res. 29(2), 278–284 (2014).
    [Crossref]
  32. L. Dong, W. Guan, Q. Chen, X. Li, X. Liu, and X. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
    [Crossref]
  33. M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
    [Crossref]
  34. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).
    [Crossref] [PubMed]
  35. H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
    [Crossref] [PubMed]
  36. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Sediment Res. 23, 2693–2702 (2002).
  37. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Sediment Res. 26, 5651–5663 (2005).
  38. J.-H. Ahn, Y.-J. Park, J.-H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
    [Crossref]
  39. K. J. Hyde, J. E. O’Reilly, and C. A. Oviatt, “Validation of SeaWiFS chlorophyll a in Massachusetts Bay,” Cont. Shelf Res. 27(12), 1677–1691 (2007).
    [Crossref]
  40. C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim. Res. 30, 79–82 (2005).
    [Crossref]
  41. C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
    [Crossref]
  42. D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
    [Crossref]
  43. Z. Qiu, “A simple optical model to estimate suspended particulate matter in Yellow River Estuary,” Opt. Express 21(23), 27891–27904 (2013).
    [Crossref] [PubMed]
  44. M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
    [Crossref]
  45. E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
    [Crossref]
  46. S. Jilan and W. Kangshan, “Changjiang river plume and suspended sediment transport in Hangzhou Bay,” Cont. Shelf Res. 9(1), 93–111 (1989).
    [Crossref]
  47. V. Choubey, “Correlation of turbidity with Indian Remote Sensing Satellite-1A data,” Hydrol. Sci. J. 37(2), 129–140 (1992).
    [Crossref]
  48. Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
    [Crossref]
  49. A. Maltese, F. Capodici, G. Ciraolo, and G. La Loggia, “Coastal zone water quality: Calibration of a water-turbidity equation for MODIS data,” Eur. J. Remote Sens. 46, 333–347 (2013).
    [Crossref]
  50. C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
    [Crossref] [PubMed]
  51. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. Atmos. (1984–2012) 102, 17081–17106 (1997).
    [Crossref]
  52. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [Crossref] [PubMed]
  53. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
    [Crossref] [PubMed]
  54. S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).
  55. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
    [Crossref]
  56. P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).
    [Crossref]

2015 (1)

L. Qi, C. Hu, H. Duan, Y. Zhang, and R. Ma, “Influence of Particle Composition on Remote Sensing Reflectance and MERIS Maximum Chlorophyll Index Algorithm: Examples From Taihu Lake and Chaohu Lake,” IEEE Geosci. Remote Sens. Lett. 12(6), 1170–1174 (2015).
[Crossref]

2014 (6)

L. Feng, C. Hu, X. Han, X. Chen, and L. Qi, “Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach,” Remote Sens. 7(1), 275–299 (2014).
[Crossref]

J. Zhao, M. Temimi, H. Ghedira, and C. Hu, “Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters--a case study in the Arabian Gulf,” Opt. Express 22(11), 13755–13772 (2014).
[Crossref] [PubMed]

L. Qi, C. Hu, H. Duan, J. Cannizzaro, and R. Ma, “A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations,” Remote Sens. Environ. 154, 298–317 (2014).
[Crossref]

X. Lou and C. Hu, “Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI,” Remote Sens. Environ. 140, 562–572 (2014).
[Crossref]

M. Cong, T. Jiang, Y. Qi, H. Dong, D. Teng, and S. Lu, “Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea,” Int. J. Sediment Res. 29(2), 278–284 (2014).
[Crossref]

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

2013 (6)

Z. Qiu, “A simple optical model to estimate suspended particulate matter in Yellow River Estuary,” Opt. Express 21(23), 27891–27904 (2013).
[Crossref] [PubMed]

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

A. Maltese, F. Capodici, G. Ciraolo, and G. La Loggia, “Coastal zone water quality: Calibration of a water-turbidity equation for MODIS data,” Eur. J. Remote Sens. 46, 333–347 (2013).
[Crossref]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

D. Yang, B. Yin, J. Sun, and Y. Zhang, “Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer,” J. Mar. Syst. 123-124, 1–18 (2013).
[Crossref]

Z. Mao, J. Chen, Z. Hao, D. Pan, B. Tao, and Q. Zhu, “A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions,” Remote Sens. Environ. 132, 186–194 (2013).
[Crossref]

2012 (5)

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

J. Brajard, R. Santer, M. Crépon, and S. Thiria, “Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion,” Remote Sens. Environ. 126, 51–61 (2012).
[Crossref]

M. Potes, M. J. Costa, and R. Salgado, “Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling,” Hydrol. Earth Syst. Sci. 16(6), 1623–1633 (2012).
[Crossref]

J.-H. Ahn, Y.-J. Park, J.-H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[Crossref] [PubMed]

2011 (2)

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

L. Dong, W. Guan, Q. Chen, X. Li, X. Liu, and X. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

2010 (4)

C. Petus, G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, “Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery,” Cont. Shelf Res. 30(5), 379–392 (2010).
[Crossref]

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[Crossref] [PubMed]

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).
[Crossref]

2009 (2)

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

J. Bustamante, F. Pacios, R. Díaz-Delgado, and D. Aragonés, “Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images,” J. Environ. Manage. 90(7), 2219–2225 (2009).
[Crossref] [PubMed]

2008 (3)

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

W. Shi and M. Wang, “Three‐dimensional observations from MODIS and CALIPSO for ocean responses to cyclone Nargis in the Gulf of Martaban,” Geophys. Res. Lett. 35(21), L21603 (2008).
[Crossref]

E. Parliament, “Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive),” Off. J. Eur. Uni. L 164, 19–40 (2008).

2007 (4)

Y. Wu, C. C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[Crossref]

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

K. J. Hyde, J. E. O’Reilly, and C. A. Oviatt, “Validation of SeaWiFS chlorophyll a in Massachusetts Bay,” Cont. Shelf Res. 27(12), 1677–1691 (2007).
[Crossref]

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[Crossref]

2006 (1)

J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
[Crossref]

2005 (3)

C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim. Res. 30, 79–82 (2005).
[Crossref]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the US: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[Crossref]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Sediment Res. 26, 5651–5663 (2005).

2002 (2)

J. Acker, C. Brown, A. Hine, E. Armstrong, and N. Kuring, “Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms,” Int. J. Remote Sens. 23(14), 2853–2868 (2002).
[Crossref]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Sediment Res. 23, 2693–2702 (2002).

2000 (1)

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

1996 (1)

D. G. Goodin, J. A. Harrington, M. D. Nellis, and D. C. Rundquist, “Mapping Reservoir Turbidity Patterns Using SPOT‐HRV Data,” Geocarto Int. 11(4), 71–78 (1996).
[Crossref]

1994 (3)

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[Crossref]

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

1992 (2)

1991 (1)

S. Sathyendranath, A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, “Biological control of surface temperature in the Arabian Sea,” Nature 349(6304), 54–56 (1991).
[Crossref]

1989 (2)

S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, “Remote sensing of oceanic primary production: computations using a spectral model,” Deep Sea Res., Part I 36, 431–453 (1989).

S. Jilan and W. Kangshan, “Changjiang river plume and suspended sediment transport in Hangzhou Bay,” Cont. Shelf Res. 9(1), 93–111 (1989).
[Crossref]

1988 (2)

T. Platt, S. Sathyendranath, C. M. Caverhill, and M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep Sea Res., Part I 35, 855–879 (1988).

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).
[Crossref] [PubMed]

Acker, J.

J. Acker, C. Brown, A. Hine, E. Armstrong, and N. Kuring, “Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms,” Int. J. Remote Sens. 23(14), 2853–2868 (2002).
[Crossref]

Ahn, J.-H.

J.-H. Ahn, Y.-J. Park, J.-H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Ahn, Y.-H.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Andréfouët, S.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

Antoine, D.

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[Crossref]

Aragonés, D.

J. Bustamante, F. Pacios, R. Díaz-Delgado, and D. Aragonés, “Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images,” J. Environ. Manage. 90(7), 2219–2225 (2009).
[Crossref] [PubMed]

Armstrong, E.

J. Acker, C. Brown, A. Hine, E. Armstrong, and N. Kuring, “Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms,” Int. J. Remote Sens. 23(14), 2853–2868 (2002).
[Crossref]

Bai, Y.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Bailey, S. W.

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).
[Crossref]

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[Crossref] [PubMed]

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Barnes, B. B.

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

Barnes, R. A.

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Boler, R.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Brajard, J.

J. Brajard, R. Santer, M. Crépon, and S. Thiria, “Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion,” Remote Sens. Environ. 126, 51–61 (2012).
[Crossref]

Brown, C.

J. Acker, C. Brown, A. Hine, E. Armstrong, and N. Kuring, “Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms,” Int. J. Remote Sens. 23(14), 2853–2868 (2002).
[Crossref]

Brown, J. W.

Bustamante, J.

J. Bustamante, F. Pacios, R. Díaz-Delgado, and D. Aragonés, “Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images,” J. Environ. Manage. 90(7), 2219–2225 (2009).
[Crossref] [PubMed]

Cannizzaro, J.

L. Qi, C. Hu, H. Duan, J. Cannizzaro, and R. Ma, “A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations,” Remote Sens. Environ. 154, 298–317 (2014).
[Crossref]

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Cannizzaro, J. P.

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

Capodici, F.

A. Maltese, F. Capodici, G. Ciraolo, and G. La Loggia, “Coastal zone water quality: Calibration of a water-turbidity equation for MODIS data,” Eur. J. Remote Sens. 46, 333–347 (2013).
[Crossref]

Carder, K. L.

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Caverhill, C. M.

S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, “Remote sensing of oceanic primary production: computations using a spectral model,” Deep Sea Res., Part I 36, 431–453 (1989).

T. Platt, S. Sathyendranath, C. M. Caverhill, and M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep Sea Res., Part I 35, 855–879 (1988).

Chen, C.-T. A.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Chen, J.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Z. Mao, J. Chen, Z. Hao, D. Pan, B. Tao, and Q. Zhu, “A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions,” Remote Sens. Environ. 132, 186–194 (2013).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Chen, Q.

L. Dong, W. Guan, Q. Chen, X. Li, X. Liu, and X. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Chen, X.

L. Feng, C. Hu, X. Han, X. Chen, and L. Qi, “Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach,” Remote Sens. 7(1), 275–299 (2014).
[Crossref]

Chen, Z.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[Crossref]

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

Chiang, C.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Choubey, V.

V. Choubey, “Correlation of turbidity with Indian Remote Sensing Satellite-1A data,” Hydrol. Sci. J. 37(2), 129–140 (1992).
[Crossref]

Chust, G.

C. Petus, G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, “Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery,” Cont. Shelf Res. 30(5), 379–392 (2010).
[Crossref]

Ciraolo, G.

A. Maltese, F. Capodici, G. Ciraolo, and G. La Loggia, “Coastal zone water quality: Calibration of a water-turbidity equation for MODIS data,” Eur. J. Remote Sens. 46, 333–347 (2013).
[Crossref]

Cong, M.

M. Cong, T. Jiang, Y. Qi, H. Dong, D. Teng, and S. Lu, “Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea,” Int. J. Sediment Res. 29(2), 278–284 (2014).
[Crossref]

Costa, M. J.

M. Potes, M. J. Costa, and R. Salgado, “Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling,” Hydrol. Earth Syst. Sci. 16(6), 1623–1633 (2012).
[Crossref]

Crépon, M.

J. Brajard, R. Santer, M. Crépon, and S. Thiria, “Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion,” Remote Sens. Environ. 126, 51–61 (2012).
[Crossref]

Cui, Q.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Davis, C. O.

DeMaster, D.

J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
[Crossref]

Deschamps, P.-Y.

R. J. Frouin, L. Gross-Colzy, and P.-Y. Deschamps, “Ocean color remote sensing without explicit aerosol correction,” in Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space (ISOP, 2003), pp. 133–142.

Díaz-Delgado, R.

J. Bustamante, F. Pacios, R. Díaz-Delgado, and D. Aragonés, “Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images,” J. Environ. Manage. 90(7), 2219–2225 (2009).
[Crossref] [PubMed]

Ding, J.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Dong, H.

M. Cong, T. Jiang, Y. Qi, H. Dong, D. Teng, and S. Lu, “Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea,” Int. J. Sediment Res. 29(2), 278–284 (2014).
[Crossref]

Dong, L.

L. Dong, W. Guan, Q. Chen, X. Li, X. Liu, and X. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Dong, Q.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Dong, X.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Douillet, P.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

Doxaran, D.

C. Petus, G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, “Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery,” Cont. Shelf Res. 30(5), 379–392 (2010).
[Crossref]

Duan, H.

L. Qi, C. Hu, H. Duan, Y. Zhang, and R. Ma, “Influence of Particle Composition on Remote Sensing Reflectance and MERIS Maximum Chlorophyll Index Algorithm: Examples From Taihu Lake and Chaohu Lake,” IEEE Geosci. Remote Sens. Lett. 12(6), 1170–1174 (2015).
[Crossref]

L. Qi, C. Hu, H. Duan, J. Cannizzaro, and R. Ma, “A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations,” Remote Sens. Environ. 154, 298–317 (2014).
[Crossref]

Dupouy, C.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

English, D.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Eplee, R. E.

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Evans, R. H.

Feldman, G. C.

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Feng, L.

L. Feng, C. Hu, X. Han, X. Chen, and L. Qi, “Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach,” Remote Sens. 7(1), 275–299 (2014).
[Crossref]

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[Crossref] [PubMed]

Firestone, E. R.

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Franz, B. A.

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[Crossref] [PubMed]

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[Crossref] [PubMed]

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).
[Crossref]

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Froidefond, J.-M.

C. Petus, G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, “Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery,” Cont. Shelf Res. 30(5), 379–392 (2010).
[Crossref]

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

Frouin, R. J.

R. J. Frouin, L. Gross-Colzy, and P.-Y. Deschamps, “Ocean color remote sensing without explicit aerosol correction,” in Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space (ISOP, 2003), pp. 133–142.

Ghedira, H.

Gohin, F.

C. Petus, G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, “Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery,” Cont. Shelf Res. 30(5), 379–392 (2010).
[Crossref]

Goodin, D. G.

D. G. Goodin, J. A. Harrington, M. D. Nellis, and D. C. Rundquist, “Mapping Reservoir Turbidity Patterns Using SPOT‐HRV Data,” Geocarto Int. 11(4), 71–78 (1996).
[Crossref]

Gordon, H. R.

Gouveia, A. D.

S. Sathyendranath, A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, “Biological control of surface temperature in the Arabian Sea,” Nature 349(6304), 54–56 (1991).
[Crossref]

Gross-Colzy, L.

R. J. Frouin, L. Gross-Colzy, and P.-Y. Deschamps, “Ocean color remote sensing without explicit aerosol correction,” in Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space (ISOP, 2003), pp. 133–142.

Guan, W.

L. Dong, W. Guan, Q. Chen, X. Li, X. Liu, and X. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Han, X.

L. Feng, C. Hu, X. Han, X. Chen, and L. Qi, “Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach,” Remote Sens. 7(1), 275–299 (2014).
[Crossref]

Hao, Z.

Z. Mao, J. Chen, Z. Hao, D. Pan, B. Tao, and Q. Zhu, “A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions,” Remote Sens. Environ. 132, 186–194 (2013).
[Crossref]

Harrington, J. A.

D. G. Goodin, J. A. Harrington, M. D. Nellis, and D. C. Rundquist, “Mapping Reservoir Turbidity Patterns Using SPOT‐HRV Data,” Geocarto Int. 11(4), 71–78 (1996).
[Crossref]

He, X.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Hine, A.

J. Acker, C. Brown, A. Hine, E. Armstrong, and N. Kuring, “Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms,” Int. J. Remote Sens. 23(14), 2853–2868 (2002).
[Crossref]

Hooker, S.

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Hu, C.

L. Qi, C. Hu, H. Duan, Y. Zhang, and R. Ma, “Influence of Particle Composition on Remote Sensing Reflectance and MERIS Maximum Chlorophyll Index Algorithm: Examples From Taihu Lake and Chaohu Lake,” IEEE Geosci. Remote Sens. Lett. 12(6), 1170–1174 (2015).
[Crossref]

X. Lou and C. Hu, “Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI,” Remote Sens. Environ. 140, 562–572 (2014).
[Crossref]

L. Feng, C. Hu, X. Han, X. Chen, and L. Qi, “Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach,” Remote Sens. 7(1), 275–299 (2014).
[Crossref]

L. Qi, C. Hu, H. Duan, J. Cannizzaro, and R. Ma, “A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations,” Remote Sens. Environ. 154, 298–317 (2014).
[Crossref]

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

J. Zhao, M. Temimi, H. Ghedira, and C. Hu, “Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters--a case study in the Arabian Gulf,” Opt. Express 22(11), 13755–13772 (2014).
[Crossref] [PubMed]

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[Crossref] [PubMed]

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[Crossref]

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Huang, N.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Hyde, K. J.

K. J. Hyde, J. E. O’Reilly, and C. A. Oviatt, “Validation of SeaWiFS chlorophyll a in Massachusetts Bay,” Cont. Shelf Res. 27(12), 1677–1691 (2007).
[Crossref]

Ishizaka, J.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Jiang, T.

M. Cong, T. Jiang, Y. Qi, H. Dong, D. Teng, and S. Lu, “Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea,” Int. J. Sediment Res. 29(2), 278–284 (2014).
[Crossref]

Jilan, S.

S. Jilan and W. Kangshan, “Changjiang river plume and suspended sediment transport in Hangzhou Bay,” Cont. Shelf Res. 9(1), 93–111 (1989).
[Crossref]

Kangshan, W.

S. Jilan and W. Kangshan, “Changjiang river plume and suspended sediment transport in Hangzhou Bay,” Cont. Shelf Res. 9(1), 93–111 (1989).
[Crossref]

Kawamura, H.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Kim, S.-W.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Kiyomoto, Y.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Kovach, C.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Kuring, N.

J. Acker, C. Brown, A. Hine, E. Armstrong, and N. Kuring, “Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms,” Int. J. Remote Sens. 23(14), 2853–2868 (2002).
[Crossref]

La Loggia, G.

A. Maltese, F. Capodici, G. Ciraolo, and G. La Loggia, “Coastal zone water quality: Calibration of a water-turbidity equation for MODIS data,” Eur. J. Remote Sens. 46, 333–347 (2013).
[Crossref]

Le, C.

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Lee, B.

J.-H. Ahn, Y.-J. Park, J.-H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Lee, Z.

Lewis, M. R.

S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, “Remote sensing of oceanic primary production: computations using a spectral model,” Deep Sea Res., Part I 36, 431–453 (1989).

T. Platt, S. Sathyendranath, C. M. Caverhill, and M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep Sea Res., Part I 35, 855–879 (1988).

Li, A.

J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
[Crossref]

Li, X.

L. Dong, W. Guan, Q. Chen, X. Li, X. Liu, and X. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Liu, J.

J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
[Crossref]

Liu, X.

L. Dong, W. Guan, Q. Chen, X. Li, X. Liu, and X. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Lou, X.

X. Lou and C. Hu, “Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI,” Remote Sens. Environ. 140, 562–572 (2014).
[Crossref]

Lu, S.

M. Cong, T. Jiang, Y. Qi, H. Dong, D. Teng, and S. Lu, “Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea,” Int. J. Sediment Res. 29(2), 278–284 (2014).
[Crossref]

Ma, R.

L. Qi, C. Hu, H. Duan, Y. Zhang, and R. Ma, “Influence of Particle Composition on Remote Sensing Reflectance and MERIS Maximum Chlorophyll Index Algorithm: Examples From Taihu Lake and Chaohu Lake,” IEEE Geosci. Remote Sens. Lett. 12(6), 1170–1174 (2015).
[Crossref]

L. Qi, C. Hu, H. Duan, J. Cannizzaro, and R. Ma, “A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations,” Remote Sens. Environ. 154, 298–317 (2014).
[Crossref]

Maltese, A.

A. Maltese, F. Capodici, G. Ciraolo, and G. La Loggia, “Coastal zone water quality: Calibration of a water-turbidity equation for MODIS data,” Eur. J. Remote Sens. 46, 333–347 (2013).
[Crossref]

Mannino, A.

Mao, Z.

Z. Mao, J. Chen, Z. Hao, D. Pan, B. Tao, and Q. Zhu, “A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions,” Remote Sens. Environ. 132, 186–194 (2013).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Matsuura, K.

C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim. Res. 30, 79–82 (2005).
[Crossref]

McClain, C. R.

Milliman, J.

J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
[Crossref]

Morel, A.

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[Crossref]

Muller-Karger, F.

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[Crossref]

Muller-Karger, F. E.

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Muñoz-Caravaca, A.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

Nellis, M. D.

D. G. Goodin, J. A. Harrington, M. D. Nellis, and D. C. Rundquist, “Mapping Reservoir Turbidity Patterns Using SPOT‐HRV Data,” Geocarto Int. 11(4), 71–78 (1996).
[Crossref]

Neveux, J.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

O’Reilly, J. E.

K. J. Hyde, J. E. O’Reilly, and C. A. Oviatt, “Validation of SeaWiFS chlorophyll a in Massachusetts Bay,” Cont. Shelf Res. 27(12), 1677–1691 (2007).
[Crossref]

Oh, I. S.

J.-H. Ahn, Y.-J. Park, J.-H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Ouillon, S.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

Oviatt, C. A.

K. J. Hyde, J. E. O’Reilly, and C. A. Oviatt, “Validation of SeaWiFS chlorophyll a in Massachusetts Bay,” Cont. Shelf Res. 27(12), 1677–1691 (2007).
[Crossref]

Pacios, F.

J. Bustamante, F. Pacios, R. Díaz-Delgado, and D. Aragonés, “Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images,” J. Environ. Manage. 90(7), 2219–2225 (2009).
[Crossref] [PubMed]

Pan, D.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Z. Mao, J. Chen, Z. Hao, D. Pan, B. Tao, and Q. Zhu, “A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions,” Remote Sens. Environ. 132, 186–194 (2013).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Park, Y.-J.

J.-H. Ahn, Y.-J. Park, J.-H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Parliament, E.

E. Parliament, “Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive),” Off. J. Eur. Uni. L 164, 19–40 (2008).

Patt, F. S.

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Petrenko, A.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

Petus, C.

C. Petus, G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, “Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery,” Cont. Shelf Res. 30(5), 379–392 (2010).
[Crossref]

Platt, T.

Y. Wu, C. C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[Crossref]

S. Sathyendranath, A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, “Biological control of surface temperature in the Arabian Sea,” Nature 349(6304), 54–56 (1991).
[Crossref]

S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, “Remote sensing of oceanic primary production: computations using a spectral model,” Deep Sea Res., Part I 36, 431–453 (1989).

T. Platt, S. Sathyendranath, C. M. Caverhill, and M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep Sea Res., Part I 35, 855–879 (1988).

Potes, M.

M. Potes, M. J. Costa, and R. Salgado, “Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling,” Hydrol. Earth Syst. Sci. 16(6), 1623–1633 (2012).
[Crossref]

Qi, L.

L. Qi, C. Hu, H. Duan, Y. Zhang, and R. Ma, “Influence of Particle Composition on Remote Sensing Reflectance and MERIS Maximum Chlorophyll Index Algorithm: Examples From Taihu Lake and Chaohu Lake,” IEEE Geosci. Remote Sens. Lett. 12(6), 1170–1174 (2015).
[Crossref]

L. Feng, C. Hu, X. Han, X. Chen, and L. Qi, “Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach,” Remote Sens. 7(1), 275–299 (2014).
[Crossref]

L. Qi, C. Hu, H. Duan, J. Cannizzaro, and R. Ma, “A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations,” Remote Sens. Environ. 154, 298–317 (2014).
[Crossref]

Qi, Y.

M. Cong, T. Jiang, Y. Qi, H. Dong, D. Teng, and S. Lu, “Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea,” Int. J. Sediment Res. 29(2), 278–284 (2014).
[Crossref]

Qiu, Z.

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

Z. Qiu, “A simple optical model to estimate suspended particulate matter in Yellow River Estuary,” Opt. Express 21(23), 27891–27904 (2013).
[Crossref] [PubMed]

Ravindran, P.

S. Sathyendranath, A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, “Biological control of surface temperature in the Arabian Sea,” Nature 349(6304), 54–56 (1991).
[Crossref]

Robinson, W. D.

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Rundquist, D. C.

D. G. Goodin, J. A. Harrington, M. D. Nellis, and D. C. Rundquist, “Mapping Reservoir Turbidity Patterns Using SPOT‐HRV Data,” Geocarto Int. 11(4), 71–78 (1996).
[Crossref]

Ryu, J.-H.

J.-H. Ahn, Y.-J. Park, J.-H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Sagarminaga, Y.

C. Petus, G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, “Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery,” Cont. Shelf Res. 30(5), 379–392 (2010).
[Crossref]

Salgado, R.

M. Potes, M. J. Costa, and R. Salgado, “Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling,” Hydrol. Earth Syst. Sci. 16(6), 1623–1633 (2012).
[Crossref]

Santer, R.

J. Brajard, R. Santer, M. Crépon, and S. Thiria, “Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion,” Remote Sens. Environ. 126, 51–61 (2012).
[Crossref]

Sathyendranath, S.

Y. Wu, C. C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[Crossref]

S. Sathyendranath, A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, “Biological control of surface temperature in the Arabian Sea,” Nature 349(6304), 54–56 (1991).
[Crossref]

S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, “Remote sensing of oceanic primary production: computations using a spectral model,” Deep Sea Res., Part I 36, 431–453 (1989).

T. Platt, S. Sathyendranath, C. M. Caverhill, and M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep Sea Res., Part I 35, 855–879 (1988).

Shetye, S. R.

S. Sathyendranath, A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, “Biological control of surface temperature in the Arabian Sea,” Nature 349(6304), 54–56 (1991).
[Crossref]

Shi, W.

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

W. Shi and M. Wang, “Three‐dimensional observations from MODIS and CALIPSO for ocean responses to cyclone Nargis in the Gulf of Martaban,” Geophys. Res. Lett. 35(21), L21603 (2008).
[Crossref]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the US: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[Crossref]

Siswanto, E.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Son, S.

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

Song, Q.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Sun, D.

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

Sun, J.

D. Yang, B. Yin, J. Sun, and Y. Zhang, “Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer,” J. Mar. Syst. 123-124, 1–18 (2013).
[Crossref]

Tang, C. C.

Y. Wu, C. C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[Crossref]

Tang, J.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Tao, B.

Z. Mao, J. Chen, Z. Hao, D. Pan, B. Tao, and Q. Zhu, “A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions,” Remote Sens. Environ. 132, 186–194 (2013).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Temimi, M.

Teng, D.

M. Cong, T. Jiang, Y. Qi, H. Dong, D. Teng, and S. Lu, “Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea,” Int. J. Sediment Res. 29(2), 278–284 (2014).
[Crossref]

Thiria, S.

J. Brajard, R. Santer, M. Crépon, and S. Thiria, “Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion,” Remote Sens. Environ. 126, 51–61 (2012).
[Crossref]

Velozzi, D.

J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
[Crossref]

Wang, M.

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

W. Shi and M. Wang, “Three‐dimensional observations from MODIS and CALIPSO for ocean responses to cyclone Nargis in the Gulf of Martaban,” Geophys. Res. Lett. 35(21), L21603 (2008).
[Crossref]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the US: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[Crossref]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Sediment Res. 26, 5651–5663 (2005).

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Sediment Res. 23, 2693–2702 (2002).

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[Crossref] [PubMed]

Warnock, R. E.

S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, “Remote sensing of oceanic primary production: computations using a spectral model,” Deep Sea Res., Part I 36, 431–453 (1989).

Werdell, P. J.

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[Crossref] [PubMed]

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).
[Crossref]

Willmott, C. J.

C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim. Res. 30, 79–82 (2005).
[Crossref]

Wu, Y.

Y. Wu, C. C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[Crossref]

Xu, K.

J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
[Crossref]

Yamada, K.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Yamaguchi, H.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Yang, D.

D. Yang, B. Yin, J. Sun, and Y. Zhang, “Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer,” J. Mar. Syst. 123-124, 1–18 (2013).
[Crossref]

Yang, Z.

J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
[Crossref]

Yin, B.

D. Yang, B. Yin, J. Sun, and Y. Zhang, “Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer,” J. Mar. Syst. 123-124, 1–18 (2013).
[Crossref]

Yoo, S.

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

Zeng, X.

L. Dong, W. Guan, Q. Chen, X. Li, X. Liu, and X. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Zhang, M.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

Zhang, Y.

L. Qi, C. Hu, H. Duan, Y. Zhang, and R. Ma, “Influence of Particle Composition on Remote Sensing Reflectance and MERIS Maximum Chlorophyll Index Algorithm: Examples From Taihu Lake and Chaohu Lake,” IEEE Geosci. Remote Sens. Lett. 12(6), 1170–1174 (2015).
[Crossref]

D. Yang, B. Yin, J. Sun, and Y. Zhang, “Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer,” J. Mar. Syst. 123-124, 1–18 (2013).
[Crossref]

Zhao, J.

Zhu, Q.

Z. Mao, J. Chen, Z. Hao, D. Pan, B. Tao, and Q. Zhu, “A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions,” Remote Sens. Environ. 132, 186–194 (2013).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

Appl. Opt. (4)

Clim. Res. (1)

C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim. Res. 30, 79–82 (2005).
[Crossref]

Cont. Shelf Res. (4)

K. J. Hyde, J. E. O’Reilly, and C. A. Oviatt, “Validation of SeaWiFS chlorophyll a in Massachusetts Bay,” Cont. Shelf Res. 27(12), 1677–1691 (2007).
[Crossref]

S. Jilan and W. Kangshan, “Changjiang river plume and suspended sediment transport in Hangzhou Bay,” Cont. Shelf Res. 9(1), 93–111 (1989).
[Crossref]

J. Liu, A. Li, K. Xu, D. Velozzi, Z. Yang, J. Milliman, and D. DeMaster, “Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea,” Cont. Shelf Res. 26(17-18), 2141–2156 (2006).
[Crossref]

C. Petus, G. Chust, F. Gohin, D. Doxaran, J.-M. Froidefond, and Y. Sagarminaga, “Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery,” Cont. Shelf Res. 30(5), 379–392 (2010).
[Crossref]

Deep Sea Res. Part 2 Top. Stud. Oceanogr. (1)

Y. Wu, C. C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54(23-26), 2630–2642 (2007).
[Crossref]

Deep Sea Res., Part I (2)

T. Platt, S. Sathyendranath, C. M. Caverhill, and M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep Sea Res., Part I 35, 855–879 (1988).

S. Sathyendranath, T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, “Remote sensing of oceanic primary production: computations using a spectral model,” Deep Sea Res., Part I 36, 431–453 (1989).

Estuar. Coast. Shelf Sci. (1)

L. Dong, W. Guan, Q. Chen, X. Li, X. Liu, and X. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Eur. J. Remote Sens. (1)

A. Maltese, F. Capodici, G. Ciraolo, and G. La Loggia, “Coastal zone water quality: Calibration of a water-turbidity equation for MODIS data,” Eur. J. Remote Sens. 46, 333–347 (2013).
[Crossref]

Geocarto Int. (1)

D. G. Goodin, J. A. Harrington, M. D. Nellis, and D. C. Rundquist, “Mapping Reservoir Turbidity Patterns Using SPOT‐HRV Data,” Geocarto Int. 11(4), 71–78 (1996).
[Crossref]

Geophys. Res. Lett. (2)

W. Shi and M. Wang, “Three‐dimensional observations from MODIS and CALIPSO for ocean responses to cyclone Nargis in the Gulf of Martaban,” Geophys. Res. Lett. 35(21), L21603 (2008).
[Crossref]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the US: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005).
[Crossref]

Hydrol. Earth Syst. Sci. (1)

M. Potes, M. J. Costa, and R. Salgado, “Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling,” Hydrol. Earth Syst. Sci. 16(6), 1623–1633 (2012).
[Crossref]

Hydrol. Sci. J. (1)

V. Choubey, “Correlation of turbidity with Indian Remote Sensing Satellite-1A data,” Hydrol. Sci. J. 37(2), 129–140 (1992).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

L. Qi, C. Hu, H. Duan, Y. Zhang, and R. Ma, “Influence of Particle Composition on Remote Sensing Reflectance and MERIS Maximum Chlorophyll Index Algorithm: Examples From Taihu Lake and Chaohu Lake,” IEEE Geosci. Remote Sens. Lett. 12(6), 1170–1174 (2015).
[Crossref]

Int. J. Remote Sens. (1)

J. Acker, C. Brown, A. Hine, E. Armstrong, and N. Kuring, “Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms,” Int. J. Remote Sens. 23(14), 2853–2868 (2002).
[Crossref]

Int. J. Sediment Res. (3)

M. Cong, T. Jiang, Y. Qi, H. Dong, D. Teng, and S. Lu, “Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea,” Int. J. Sediment Res. 29(2), 278–284 (2014).
[Crossref]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Sediment Res. 23, 2693–2702 (2002).

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Sediment Res. 26, 5651–5663 (2005).

J. Environ. Manage. (1)

J. Bustamante, F. Pacios, R. Díaz-Delgado, and D. Aragonés, “Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images,” J. Environ. Manage. 90(7), 2219–2225 (2009).
[Crossref] [PubMed]

J. Mar. Syst. (1)

D. Yang, B. Yin, J. Sun, and Y. Zhang, “Numerical study on the origins and the forcing mechanism of the phosphate in upwelling areas off the coast of Zhejiang province, China in summer,” J. Mar. Syst. 123-124, 1–18 (2013).
[Crossref]

J. Oceanogr. (1)

E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011).
[Crossref]

J. Phys. Oceanogr. (1)

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[Crossref]

Nature (1)

S. Sathyendranath, A. D. Gouveia, S. R. Shetye, P. Ravindran, and T. Platt, “Biological control of surface temperature in the Arabian Sea,” Nature 349(6304), 54–56 (1991).
[Crossref]

Ocean Sci. J. (1)

J.-H. Ahn, Y.-J. Park, J.-H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Off. J. Eur. Uni. L (1)

E. Parliament, “Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive),” Off. J. Eur. Uni. L 164, 19–40 (2008).

Opt. Express (3)

Prog. Oceanogr. (1)

C. Le, C. Hu, D. English, J. Cannizzaro, Z. Chen, L. Feng, R. Boler, and C. Kovach, “Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations,” Prog. Oceanogr. 109, 90–103 (2013).
[Crossref]

Remote Sens. (1)

L. Feng, C. Hu, X. Han, X. Chen, and L. Qi, “Long-Term Distribution Patterns of Chlorophyll-a Concentration in China’s Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach,” Remote Sens. 7(1), 275–299 (2014).
[Crossref]

Remote Sens. Environ. (14)

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C.-T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

L. Qi, C. Hu, H. Duan, J. Cannizzaro, and R. Ma, “A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations,” Remote Sens. Environ. 154, 298–317 (2014).
[Crossref]

X. Lou and C. Hu, “Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI,” Remote Sens. Environ. 140, 562–572 (2014).
[Crossref]

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ. 124, 819–831 (2012).
[Crossref]

J. Brajard, R. Santer, M. Crépon, and S. Thiria, “Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion,” Remote Sens. Environ. 126, 51–61 (2012).
[Crossref]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Z. Mao, J. Chen, Z. Hao, D. Pan, B. Tao, and Q. Zhu, “A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions,” Remote Sens. Environ. 132, 186–194 (2013).
[Crossref]

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010).
[Crossref]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[Crossref]

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).
[Crossref]

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007).
[Crossref]

Sensors (Basel Switzerland) (1)

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors (Basel Switzerland) 8(7), 4165–4185 (2008).
[Crossref]

Other (5)

B. Nechad, K. Ruddick, and G. Neukermans, “Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters,” in SPIE Europe Remote Sensing, (International Society for Optics and Photonics, 2009), 74730H–74730H–74712.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. Oceans (1978–2012) 117(2012).
[Crossref]

R. J. Frouin, L. Gross-Colzy, and P.-Y. Deschamps, “Ocean color remote sensing without explicit aerosol correction,” in Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space (ISOP, 2003), pp. 133–142.

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. Atmos. (1984–2012) 102, 17081–17106 (1997).
[Crossref]

S. Hooker, E. R. Firestone, F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, and S. W. Bailey, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Location of the Zhejiang coastal area in the East China Sea. The magenta triangle symbols indicate the locations of the 11 buoys labelled S01-11.
Fig. 2
Fig. 2 Histogram showing the frequency distribution of in situ turbidity. The numbers above each bar indicate the number of samples within each bin. The gray line is a log-normally distributed fitting curve.
Fig. 3
Fig. 3 Rayleigh-corrected reflectance spectra R rc(λ) of all GOCI data samples at 8 bands. The blue line represents the mean spectra, and the vertical bars indicate standard deviation.
Fig. 4
Fig. 4 Correlation between turbidity and Rayleigh-corrected reflectance along 8 bands.
Fig. 5
Fig. 5 Scatter plots of (a) X1 = B6 and (b) X5 = (B3 + B6) / (B3 / B6) versus turbidity (T). The solid red lines are fitted curves and dotted red lines are 95% confidence bounds.
Fig. 6
Fig. 6 Comparison between observed and estimated turbidity levels using (a) X1 model and (b) X5 model for validation (dotted line: 1:1)
Fig. 7
Fig. 7 Hourly turbidity maps of the Zhejiang coastal area as derived from GOCI data using an R rc-algorithm; December 30, 2014.
Fig. 8
Fig. 8 Turbidity profiles along transect line 1 (a), line 2 (b) and line 3 (c), as marked in Fig. 7(h) (15:15 (h)).
Fig. 9
Fig. 9 The comparison between observed and estimated T when adding ± 5% random errors to R rc at B3 (a) and B6 (b). The error bar is used to specify a range between a minimum and a maximum of one resultant point. (Dotted line log102: log101 dashed line: 1:1)

Tables (3)

Tables Icon

Table 1 Statistical parameters for turbidity T (NTU) and Rayleigh-corrected reflectance R rc(λ) (dimensionless) of full data set, calibration subset and validation subset. N: number of samples; Max: maximum; Min: minimum; SD: standard deviation; CV: coefficient of variation.

Tables Icon

Table 2 Correlations between log10(T) and X derived from GOCI R rc(λ). X1 to X8 indicate the 8 forms of X, respectively; B1 to B8 indicate R rc(λ) at bands 1 to 8, respectively; and R is the correlation coefficient.

Tables Icon

Table 3 Parameters and accuracy assessment indicators for turbidity estimation models (N = 680)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρ t ( λ ) = ρ t ( λ ) + ρ a ( λ ) + t ρ w ( λ ) ,
R rc ( λ ) = ρ t ( λ ) - ρ r ( λ ) .
RMSE = 1 N i = 1 N [ y i ' y i ] 2
MAE = 1 N i = 1 N | y i ' y i |
MRE = 1 N i = 1 N | y i ' y i y i | × 100 %
T = 10 ( c 0 + c 1 X + c 2 X 2 )

Metrics