Abstract

The contribution of graphene oxide (GO) on photocatalytic effects of CuxO on plasmonic Au is investigated. It is found that the H2 evolution rate from pure water is enhanced 1.4 fold using the visible-active CuxO/GO photocatalyst, as compared with CuxO without GO. In addition, the intensity of photoluminescence of CuxO/GO can be enhanced as much as 2.85 fold as compared with CuxO without GO. The enhancement is due to the negative fixed charge in GO, which can passivate the surface of CuxO and suppress recombination of minority electrons at the surface. The results from optical characterization in this study can help to prove the proposed mechanism of passivation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface Plasmon assisted CuxO photocatalyst for pure water splitting

Wen-Ting Kung, Yi-Hao Pai, Yu-Kuei Hsu, Chu-Hsuan Lin, and Chih-Ming Wang
Opt. Express 21(S2) A221-A228 (2013)

Photoluminescence enhancement of graphene oxide emission by infiltration in an aperiodic porous silicon multilayer

Ilaria Rea, Maurizio Casalino, Monica Terracciano, Lucia Sansone, Jane Politi, and Luca De Stefano
Opt. Express 24(21) 24413-24421 (2016)

One-step electrochemical synthesis of graphene oxide-TiO2 nanotubes for improved visible light activity

Imran Ali, Seu-Run Kim, Kyungmin Park, and Jong-Oh Kim
Opt. Mater. Express 7(5) 1535-1546 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
    [Crossref] [PubMed]
  2. K. Schulte, N. A. Vinogradov, M. L. Ng, N. Mårtensson, and A. B. Preobrajenski, “Bandgap formation in graphene on Ir(1 1 1) through oxidation,” Appl. Surf. Sci. 267, 74–76 (2013).
    [Crossref]
  3. V. G. Kravets, O. P. Marshall, R. R. Nair, B. Thackray, A. Zhukov, J. Leng, and A. N. Grigorenko, “Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels,” Opt. Express 23(2), 1265–1275 (2015).
    [Crossref] [PubMed]
  4. T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, “Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide,” J. Phys. Chem. C 115(45), 22587–22597 (2011).
    [Crossref]
  5. X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics,” Phys. Rev. Lett. 101(2), 026801 (2008).
    [Crossref] [PubMed]
  6. S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
    [Crossref] [PubMed]
  7. W. C. Lai, M. H. Ma, B. K. Lin, B. H. Hsieh, Y. R. Wu, and J. K. Sheu, “Photoelectrochemical hydrogen generation with linear gradient Al composition dodecagon faceted AlGaN/n-GaN electrode,” Opt. Express 22(S7Suppl 7), A1853–A1861 (2014).
    [Crossref] [PubMed]
  8. S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
    [Crossref]
  9. L. Fu, H. Yu, C. Zhang, Z. Shao, and B. Yi, “Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting,” Electrochim. Acta 136, 363–369 (2014).
    [Crossref]
  10. T. Peng, K. Li, P. Zeng, Q. Zhang, and X. Zhang, “Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation,” J. Phys. Chem. C 116(43), 22720–22726 (2012).
    [Crossref]
  11. S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, and M. Graetzel, “Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes,” Adv. Funct. Mater. 24(3), 303–311 (2014).
    [Crossref]
  12. P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale 4(13), 3875–3878 (2012).
    [Crossref] [PubMed]
  13. H. Xu, X. Li, S. Kang, L. Qin, G. Li, and J. Mu, “Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction,” Int. J. Hydrogen Energy 39(22), 11578–11582 (2014).
    [Crossref]
  14. W.-T. Kung, Y.-H. Pai, Y.-K. Hsu, C.-H. Lin, and C.-M. Wang, “Surface plasmon assisted CuxO photocatalyst for pure water splitting,” Opt. Express 21(S2Suppl 2), A221–A228 (2013).
    [Crossref] [PubMed]
  15. C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
    [Crossref] [PubMed]
  16. S. Z. Oener, S. A. Mann, B. Sciacca, C. Sfiligoj, J. Hoang, and E. C. Garnett, “Au-Cu2O core-shell nanowire photovoltaics,” Appl. Phys. Lett. 106(2), 023501 (2015).
    [Crossref]
  17. J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
    [Crossref] [PubMed]
  18. M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
    [Crossref]
  19. F. Texier, L. Servant, J. L. Bruneel, and F. Argoul, “In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy,” J. Electroanal. Chem. 446(1–2), 189–203 (1998).
    [Crossref]
  20. Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc,” J. Phys. D Appl. Phys. 37(1), 81–85 (2004).
    [Crossref]
  21. M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).
  22. A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).
  23. S. Kakuta and T. Abe, “Structural characterization of Cu2O after the evolution of H2 under visible light irradiation,” Electrochem. Solid-State Lett. 12(3), P1–P3 (2009).
    [Crossref]
  24. C.-M. Wang and C.-Y. Wang, “Photocorrosion of plasmonic enhanced CuxO photocatalyst,” J. Nanophotonics 8(1), 084095 (2014).
    [Crossref]
  25. C. Y. Lin, Y. H. Lai, D. Mersch, and E. Reisner, “Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. (Camb.) 3(12), 3482–3487 (2012).
    [Crossref]
  26. D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
    [Crossref] [PubMed]
  27. Z. Xiong, M. Zheng, S. Liu, L. Ma, and W. Shen, “Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting,” Nanotechnology 24(26), 265402 (2013).
    [Crossref] [PubMed]
  28. Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
    [Crossref]
  29. C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).
  30. S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

2015 (2)

2014 (7)

S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, and M. Graetzel, “Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes,” Adv. Funct. Mater. 24(3), 303–311 (2014).
[Crossref]

H. Xu, X. Li, S. Kang, L. Qin, G. Li, and J. Mu, “Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction,” Int. J. Hydrogen Energy 39(22), 11578–11582 (2014).
[Crossref]

W. C. Lai, M. H. Ma, B. K. Lin, B. H. Hsieh, Y. R. Wu, and J. K. Sheu, “Photoelectrochemical hydrogen generation with linear gradient Al composition dodecagon faceted AlGaN/n-GaN electrode,” Opt. Express 22(S7Suppl 7), A1853–A1861 (2014).
[Crossref] [PubMed]

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

L. Fu, H. Yu, C. Zhang, Z. Shao, and B. Yi, “Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting,” Electrochim. Acta 136, 363–369 (2014).
[Crossref]

C.-M. Wang and C.-Y. Wang, “Photocorrosion of plasmonic enhanced CuxO photocatalyst,” J. Nanophotonics 8(1), 084095 (2014).
[Crossref]

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

2013 (4)

Z. Xiong, M. Zheng, S. Liu, L. Ma, and W. Shen, “Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting,” Nanotechnology 24(26), 265402 (2013).
[Crossref] [PubMed]

Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
[Crossref]

K. Schulte, N. A. Vinogradov, M. L. Ng, N. Mårtensson, and A. B. Preobrajenski, “Bandgap formation in graphene on Ir(1 1 1) through oxidation,” Appl. Surf. Sci. 267, 74–76 (2013).
[Crossref]

W.-T. Kung, Y.-H. Pai, Y.-K. Hsu, C.-H. Lin, and C.-M. Wang, “Surface plasmon assisted CuxO photocatalyst for pure water splitting,” Opt. Express 21(S2Suppl 2), A221–A228 (2013).
[Crossref] [PubMed]

2012 (4)

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale 4(13), 3875–3878 (2012).
[Crossref] [PubMed]

T. Peng, K. Li, P. Zeng, Q. Zhang, and X. Zhang, “Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation,” J. Phys. Chem. C 116(43), 22720–22726 (2012).
[Crossref]

C. Y. Lin, Y. H. Lai, D. Mersch, and E. Reisner, “Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. (Camb.) 3(12), 3482–3487 (2012).
[Crossref]

2011 (1)

T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, “Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide,” J. Phys. Chem. C 115(45), 22587–22597 (2011).
[Crossref]

2010 (3)

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

2009 (3)

D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
[Crossref] [PubMed]

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

S. Kakuta and T. Abe, “Structural characterization of Cu2O after the evolution of H2 under visible light irradiation,” Electrochem. Solid-State Lett. 12(3), P1–P3 (2009).
[Crossref]

2008 (1)

X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics,” Phys. Rev. Lett. 101(2), 026801 (2008).
[Crossref] [PubMed]

2007 (1)

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

2004 (1)

Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc,” J. Phys. D Appl. Phys. 37(1), 81–85 (2004).
[Crossref]

1998 (2)

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

F. Texier, L. Servant, J. L. Bruneel, and F. Argoul, “In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy,” J. Electroanal. Chem. 446(1–2), 189–203 (1998).
[Crossref]

1988 (1)

J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
[Crossref] [PubMed]

Abe, T.

S. Kakuta and T. Abe, “Structural characterization of Cu2O after the evolution of H2 under visible light irradiation,” Electrochem. Solid-State Lett. 12(3), P1–P3 (2009).
[Crossref]

Argoul, F.

F. Texier, L. Servant, J. L. Bruneel, and F. Argoul, “In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy,” J. Electroanal. Chem. 446(1–2), 189–203 (1998).
[Crossref]

Azevedo, J.

S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, and M. Graetzel, “Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes,” Adv. Funct. Mater. 24(3), 303–311 (2014).
[Crossref]

Barber, J.

P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale 4(13), 3875–3878 (2012).
[Crossref] [PubMed]

Barreca, D.

D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
[Crossref] [PubMed]

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

Batabyal, S. K.

P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale 4(13), 3875–3878 (2012).
[Crossref] [PubMed]

Berger, C.

X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics,” Phys. Rev. Lett. 101(2), 026801 (2008).
[Crossref] [PubMed]

Bruneel, J. L.

F. Texier, L. Servant, J. L. Bruneel, and F. Argoul, “In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy,” J. Electroanal. Chem. 446(1–2), 189–203 (1998).
[Crossref]

Cantoro, M.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

Chae, D. H.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Chan, C.-H.

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

Chan, F.-F.

T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, “Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide,” J. Phys. Chem. C 115(45), 22587–22597 (2011).
[Crossref]

Chan, S. T.

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

Chen, C.-W.

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Chen, M.-H.

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

Chen, X.

Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
[Crossref]

Chen, Y.-Y.

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

Cheng, T.-H.

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

Chhowalla, M.

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Chi, B.

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Clemente, F.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

Comini, E.

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

Czyzyk k, M. T.

J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
[Crossref] [PubMed]

De Gendt, S.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

de Heer, W. A.

X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics,” Phys. Rev. Lett. 101(2), 026801 (2008).
[Crossref] [PubMed]

Domen, K.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

Dong, S.

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Eskes, H.

J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
[Crossref] [PubMed]

Fornasiero, P.

D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
[Crossref] [PubMed]

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

Fu, L.

L. Fu, H. Yu, C. Zhang, Z. Shao, and B. Yi, “Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting,” Electrochim. Acta 136, 363–369 (2014).
[Crossref]

Fu, Y. Q.

Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc,” J. Phys. D Appl. Phys. 37(1), 81–85 (2004).
[Crossref]

Gan, Z. H.

Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc,” J. Phys. D Appl. Phys. 37(1), 81–85 (2004).
[Crossref]

Garnett, E. C.

S. Z. Oener, S. A. Mann, B. Sciacca, C. Sfiligoj, J. Hoang, and E. C. Garnett, “Au-Cu2O core-shell nanowire photovoltaics,” Appl. Phys. Lett. 106(2), 023501 (2015).
[Crossref]

Gasparotto, A.

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
[Crossref] [PubMed]

Ghijsen, J.

J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
[Crossref] [PubMed]

Gombac, V.

D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
[Crossref] [PubMed]

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

Graetzel, M.

S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, and M. Graetzel, “Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes,” Adv. Funct. Mater. 24(3), 303–311 (2014).
[Crossref]

Grigorenko, A. N.

Guo, S.

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Haluška, M.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Han, S.

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Hara, M.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

Heyns, M. M.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

Hoang, J.

S. Z. Oener, S. A. Mann, B. Sciacca, C. Sfiligoj, J. Hoang, and E. C. Garnett, “Au-Cu2O core-shell nanowire photovoltaics,” Appl. Phys. Lett. 106(2), 023501 (2015).
[Crossref]

Hofkens, J.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

Hsieh, B. H.

Hsieh, C.-T.

T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, “Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide,” J. Phys. Chem. C 115(45), 22587–22597 (2011).
[Crossref]

Hsu, Y.-K.

Hulman, M.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Ikeda, S.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

Jan, S.-R.

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

Jia, L.

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Kaempgen, M.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Kakuta, S.

S. Kakuta and T. Abe, “Structural characterization of Cu2O after the evolution of H2 under visible light irradiation,” Electrochem. Solid-State Lett. 12(3), P1–P3 (2009).
[Crossref]

Kang, S.

H. Xu, X. Li, S. Kang, L. Qin, G. Li, and J. Mu, “Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction,” Int. J. Hydrogen Energy 39(22), 11578–11582 (2014).
[Crossref]

Komoda, M.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

Kondo, J. N.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

Kondo, T.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

Krauss, B.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Kravets, V. G.

Kung, W.-T.

Lai, W. C.

Lai, Y. H.

C. Y. Lin, Y. H. Lai, D. Mersch, and E. Reisner, “Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. (Camb.) 3(12), 3482–3487 (2012).
[Crossref]

Lebedev, O.

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

Lebert, M.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Lee, C.-H.

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

Leng, J.

Li, G.

H. Xu, X. Li, S. Kang, L. Qin, G. Li, and J. Mu, “Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction,” Int. J. Hydrogen Energy 39(22), 11578–11582 (2014).
[Crossref]

Li, J.

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Li, K.

T. Peng, K. Li, P. Zeng, Q. Zhang, and X. Zhang, “Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation,” J. Phys. Chem. C 116(43), 22720–22726 (2012).
[Crossref]

Li, S.-S.

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Li, X.

H. Xu, X. Li, S. Kang, L. Qin, G. Li, and J. Mu, “Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction,” Int. J. Hydrogen Energy 39(22), 11578–11582 (2014).
[Crossref]

X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics,” Phys. Rev. Lett. 101(2), 026801 (2008).
[Crossref] [PubMed]

Lin, B. K.

Lin, C. Y.

C. Y. Lin, Y. H. Lai, D. Mersch, and E. Reisner, “Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. (Camb.) 3(12), 3482–3487 (2012).
[Crossref]

Lin, C.-C.

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Lin, C.-H.

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

W.-T. Kung, Y.-H. Pai, Y.-K. Hsu, C.-H. Lin, and C.-M. Wang, “Surface plasmon assisted CuxO photocatalyst for pure water splitting,” Opt. Express 21(S2Suppl 2), A221–A228 (2013).
[Crossref] [PubMed]

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

Lin, H.

Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
[Crossref]

Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
[Crossref]

Liu, C. W.

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

Liu, S.

Z. Xiong, M. Zheng, S. Liu, L. Ma, and W. Shen, “Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting,” Nanotechnology 24(26), 265402 (2013).
[Crossref] [PubMed]

Lohmann, T.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Loo, S. C. J.

P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale 4(13), 3875–3878 (2012).
[Crossref] [PubMed]

Ma, L.

Z. Xiong, M. Zheng, S. Liu, L. Ma, and W. Shen, “Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting,” Nanotechnology 24(26), 265402 (2013).
[Crossref] [PubMed]

Ma, M. H.

Maccato, C.

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
[Crossref] [PubMed]

Mann, S. A.

S. Z. Oener, S. A. Mann, B. Sciacca, C. Sfiligoj, J. Hoang, and E. C. Garnett, “Au-Cu2O core-shell nanowire photovoltaics,” Appl. Phys. Lett. 106(2), 023501 (2015).
[Crossref]

Mao, H.

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Marshall, O. P.

Mårtensson, N.

K. Schulte, N. A. Vinogradov, M. L. Ng, N. Mårtensson, and A. B. Preobrajenski, “Bandgap formation in graphene on Ir(1 1 1) through oxidation,” Appl. Surf. Sci. 267, 74–76 (2013).
[Crossref]

Mersch, D.

C. Y. Lin, Y. H. Lai, D. Mersch, and E. Reisner, “Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. (Camb.) 3(12), 3482–3487 (2012).
[Crossref]

Meyer, J. C.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Ming, F.

X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics,” Phys. Rev. Lett. 101(2), 026801 (2008).
[Crossref] [PubMed]

Montini, T.

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
[Crossref] [PubMed]

Mu, J.

H. Xu, X. Li, S. Kang, L. Qin, G. Li, and J. Mu, “Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction,” Int. J. Hydrogen Energy 39(22), 11578–11582 (2014).
[Crossref]

Nair, R. R.

Ng, M. L.

K. Schulte, N. A. Vinogradov, M. L. Ng, N. Mårtensson, and A. B. Preobrajenski, “Bandgap formation in graphene on Ir(1 1 1) through oxidation,” Appl. Surf. Sci. 267, 74–76 (2013).
[Crossref]

Nourbakhsh, A.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

Obergfell, D.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Oener, S. Z.

S. Z. Oener, S. A. Mann, B. Sciacca, C. Sfiligoj, J. Hoang, and E. C. Garnett, “Au-Cu2O core-shell nanowire photovoltaics,” Appl. Phys. Lett. 106(2), 023501 (2015).
[Crossref]

Pai, Y.-H.

Peng, K.-L.

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

Peng, T.

T. Peng, K. Li, P. Zeng, Q. Zhang, and X. Zhang, “Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation,” J. Phys. Chem. C 116(43), 22720–22726 (2012).
[Crossref]

Pourtois, G.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

Pramana, S. S.

P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale 4(13), 3875–3878 (2012).
[Crossref] [PubMed]

Preobrajenski, A. B.

K. Schulte, N. A. Vinogradov, M. L. Ng, N. Mårtensson, and A. B. Preobrajenski, “Bandgap formation in graphene on Ir(1 1 1) through oxidation,” Appl. Surf. Sci. 267, 74–76 (2013).
[Crossref]

Pu, J.

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Qin, L.

H. Xu, X. Li, S. Kang, L. Qin, G. Li, and J. Mu, “Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction,” Int. J. Hydrogen Energy 39(22), 11578–11582 (2014).
[Crossref]

Reisner, E.

C. Y. Lin, Y. H. Lai, D. Mersch, and E. Reisner, “Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. (Camb.) 3(12), 3482–3487 (2012).
[Crossref]

Roth, S.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Sawatzky, G. A.

J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
[Crossref] [PubMed]

Sberveglieri, G.

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

Scalia, G.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Schreier, M.

S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, and M. Graetzel, “Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes,” Adv. Funct. Mater. 24(3), 303–311 (2014).
[Crossref]

Schulte, K.

K. Schulte, N. A. Vinogradov, M. L. Ng, N. Mårtensson, and A. B. Preobrajenski, “Bandgap formation in graphene on Ir(1 1 1) through oxidation,” Appl. Surf. Sci. 267, 74–76 (2013).
[Crossref]

Sciacca, B.

S. Z. Oener, S. A. Mann, B. Sciacca, C. Sfiligoj, J. Hoang, and E. C. Garnett, “Au-Cu2O core-shell nanowire photovoltaics,” Appl. Phys. Lett. 106(2), 023501 (2015).
[Crossref]

Sels, B. F.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

Servant, L.

F. Texier, L. Servant, J. L. Bruneel, and F. Argoul, “In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy,” J. Electroanal. Chem. 446(1–2), 189–203 (1998).
[Crossref]

Sfiligoj, C.

S. Z. Oener, S. A. Mann, B. Sciacca, C. Sfiligoj, J. Hoang, and E. C. Garnett, “Au-Cu2O core-shell nanowire photovoltaics,” Appl. Phys. Lett. 106(2), 023501 (2015).
[Crossref]

Shao, Z.

L. Fu, H. Yu, C. Zhang, Z. Shao, and B. Yi, “Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting,” Electrochim. Acta 136, 363–369 (2014).
[Crossref]

Shen, W.

Z. Xiong, M. Zheng, S. Liu, L. Ma, and W. Shen, “Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting,” Nanotechnology 24(26), 265402 (2013).
[Crossref] [PubMed]

Sheu, J. K.

Shinohara, K.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

Smet, J.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Sprinkle, M.

X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics,” Phys. Rev. Lett. 101(2), 026801 (2008).
[Crossref] [PubMed]

Stefik, M.

S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, and M. Graetzel, “Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes,” Adv. Funct. Mater. 24(3), 303–311 (2014).
[Crossref]

Tan, C. M.

Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc,” J. Phys. D Appl. Phys. 37(1), 81–85 (2004).
[Crossref]

Tanaka, A.

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

Tay, B. K.

Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc,” J. Phys. D Appl. Phys. 37(1), 81–85 (2004).
[Crossref]

Tendeloo, G. V.

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

Teng, H.

T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, “Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide,” J. Phys. Chem. C 115(45), 22587–22597 (2011).
[Crossref]

Texier, F.

F. Texier, L. Servant, J. L. Bruneel, and F. Argoul, “In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy,” J. Electroanal. Chem. 446(1–2), 189–203 (1998).
[Crossref]

Thackray, B.

Tillack, B.

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

Tilley, S. D.

S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, and M. Graetzel, “Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes,” Adv. Funct. Mater. 24(3), 303–311 (2014).
[Crossref]

Tjeng, L. H.

J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
[Crossref] [PubMed]

Tondello, E.

D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
[Crossref] [PubMed]

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

Tran, P. D.

P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale 4(13), 3875–3878 (2012).
[Crossref] [PubMed]

Tu, K.-H.

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Ulbricht, G.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

van der Veen, M. H.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

van Elp, J.

J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
[Crossref] [PubMed]

Vinogradov, N. A.

K. Schulte, N. A. Vinogradov, M. L. Ng, N. Mårtensson, and A. B. Preobrajenski, “Bandgap formation in graphene on Ir(1 1 1) through oxidation,” Appl. Surf. Sci. 267, 74–76 (2013).
[Crossref]

von Klitzing, K.

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Vosch, T.

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

Wang, C.-M.

Wang, C.-Y.

C.-M. Wang and C.-Y. Wang, “Photocorrosion of plasmonic enhanced CuxO photocatalyst,” J. Nanophotonics 8(1), 084095 (2014).
[Crossref]

Wang, X.

Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
[Crossref]

Westerink, J.

J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
[Crossref] [PubMed]

Wong, L. H.

P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale 4(13), 3875–3878 (2012).
[Crossref] [PubMed]

Wu, C.

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Wu, X.

X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics,” Phys. Rev. Lett. 101(2), 026801 (2008).
[Crossref] [PubMed]

Wu, Y. R.

Xiong, Z.

Z. Xiong, M. Zheng, S. Liu, L. Ma, and W. Shen, “Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting,” Nanotechnology 24(26), 265402 (2013).
[Crossref] [PubMed]

Xu, H.

H. Xu, X. Li, S. Kang, L. Qin, G. Li, and J. Mu, “Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction,” Int. J. Hydrogen Energy 39(22), 11578–11582 (2014).
[Crossref]

Yamamoto, Y.

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

Yeh, T.-F.

T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, “Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide,” J. Phys. Chem. C 115(45), 22587–22597 (2011).
[Crossref]

Yeh, W.-T.

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

Yi, B.

L. Fu, H. Yu, C. Zhang, Z. Shao, and B. Yi, “Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting,” Electrochim. Acta 136, 363–369 (2014).
[Crossref]

Yu, G. Q.

Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc,” J. Phys. D Appl. Phys. 37(1), 81–85 (2004).
[Crossref]

Yu, H.

L. Fu, H. Yu, C. Zhang, Z. Shao, and B. Yi, “Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting,” Electrochim. Acta 136, 363–369 (2014).
[Crossref]

Zeng, P.

T. Peng, K. Li, P. Zeng, Q. Zhang, and X. Zhang, “Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation,” J. Phys. Chem. C 116(43), 22720–22726 (2012).
[Crossref]

Zhang, C.

L. Fu, H. Yu, C. Zhang, Z. Shao, and B. Yi, “Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting,” Electrochim. Acta 136, 363–369 (2014).
[Crossref]

Zhang, Q.

T. Peng, K. Li, P. Zeng, Q. Zhang, and X. Zhang, “Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation,” J. Phys. Chem. C 116(43), 22720–22726 (2012).
[Crossref]

Zhang, X.

Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
[Crossref]

T. Peng, K. Li, P. Zeng, Q. Zhang, and X. Zhang, “Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation,” J. Phys. Chem. C 116(43), 22720–22726 (2012).
[Crossref]

Zhang, Z.

Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
[Crossref]

Zhao, Z. W.

Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc,” J. Phys. D Appl. Phys. 37(1), 81–85 (2004).
[Crossref]

Zheng, M.

Z. Xiong, M. Zheng, S. Liu, L. Ma, and W. Shen, “Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting,” Nanotechnology 24(26), 265402 (2013).
[Crossref] [PubMed]

Zhou, Y.

Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
[Crossref]

Zhukov, A.

ACS Nano (1)

S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano 4(6), 3169–3174 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

S. D. Tilley, M. Schreier, J. Azevedo, M. Stefik, and M. Graetzel, “Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes,” Adv. Funct. Mater. 24(3), 303–311 (2014).
[Crossref]

Appl. Phys. Lett. (1)

S. Z. Oener, S. A. Mann, B. Sciacca, C. Sfiligoj, J. Hoang, and E. C. Garnett, “Au-Cu2O core-shell nanowire photovoltaics,” Appl. Phys. Lett. 106(2), 023501 (2015).
[Crossref]

Appl. Surf. Sci. (1)

K. Schulte, N. A. Vinogradov, M. L. Ng, N. Mårtensson, and A. B. Preobrajenski, “Bandgap formation in graphene on Ir(1 1 1) through oxidation,” Appl. Surf. Sci. 267, 74–76 (2013).
[Crossref]

Catal. Commun. (1)

Z. Zhang, X. Chen, X. Zhang, H. Lin, H. Lin, Y. Zhou, and X. Wang, “Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production,” Catal. Commun. 36, 20–24 (2013).
[Crossref]

Chem. Commun. (Camb.) (1)

M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a photocatalyst for overall water splitting under visible light irradiation,” Chem. Commun. (Camb.) 3, 357-358 (1998).

Chem. Sci. (Camb.) (1)

C. Y. Lin, Y. H. Lai, D. Mersch, and E. Reisner, “Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting,” Chem. Sci. (Camb.) 3(12), 3482–3487 (2012).
[Crossref]

ChemSusChem (1)

D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, and E. Tondello, “The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production,” ChemSusChem 2(3), 230–233 (2009).
[Crossref] [PubMed]

ECS Trans. (2)

S.-R. Jan, C.-H. Lee, T.-H. Cheng, Y.-Y. Chen, K.-L. Peng, S. T. Chan, C. W. Liu, Y. Yamamoto, and B. Tillack, “Extrinsic effects of indirect radiative transition of Ge,” ECS Trans. 33(6), 555–562 (2010).

A. Gasparotto, D. Barreca, P. Fornasiero, V. Gombac, O. Lebedev, C. Maccato, T. Montini, E. Tondello, G. V. Tendeloo, E. Comini, and G. Sberveglieri, “Multi-functional copper oxide nanosystems for H2 sustainable production and sensing,” ECS Trans. 25(8), 1169–1176 (2009).

Electrochem. Solid-State Lett. (1)

S. Kakuta and T. Abe, “Structural characterization of Cu2O after the evolution of H2 under visible light irradiation,” Electrochem. Solid-State Lett. 12(3), P1–P3 (2009).
[Crossref]

Electrochim. Acta (1)

L. Fu, H. Yu, C. Zhang, Z. Shao, and B. Yi, “Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting,” Electrochim. Acta 136, 363–369 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C.-H. Lin, W.-T. Yeh, and M.-H. Chen, “Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide,” IEEE J. Sel. Top. Quantum Electron. 20(1), 3800105 (2014).

Int. J. Hydrogen Energy (1)

H. Xu, X. Li, S. Kang, L. Qin, G. Li, and J. Mu, “Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction,” Int. J. Hydrogen Energy 39(22), 11578–11582 (2014).
[Crossref]

J. Electroanal. Chem. (1)

F. Texier, L. Servant, J. L. Bruneel, and F. Argoul, “In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy,” J. Electroanal. Chem. 446(1–2), 189–203 (1998).
[Crossref]

J. Nanophotonics (1)

C.-M. Wang and C.-Y. Wang, “Photocorrosion of plasmonic enhanced CuxO photocatalyst,” J. Nanophotonics 8(1), 084095 (2014).
[Crossref]

J. Phys. Chem. C (2)

T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, “Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide,” J. Phys. Chem. C 115(45), 22587–22597 (2011).
[Crossref]

T. Peng, K. Li, P. Zeng, Q. Zhang, and X. Zhang, “Enhanced photocatalytic hydrogen production over graphene oxide-cadmium sulfide nanocomposite under visible light irradiation,” J. Phys. Chem. C 116(43), 22720–22726 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan, Z. W. Zhao, and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc,” J. Phys. D Appl. Phys. 37(1), 81–85 (2004).
[Crossref]

J. Power Sources (1)

S. Guo, S. Han, H. Mao, S. Dong, C. Wu, L. Jia, B. Chi, J. Pu, and J. Li, “Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure,” J. Power Sources 245, 979–985 (2014).
[Crossref]

Nanoscale (1)

P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale 4(13), 3875–3878 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett. 7(1), 343 (2012).
[Crossref] [PubMed]

Nanotechnology (2)

A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology 21(43), 435203 (2010).
[Crossref] [PubMed]

Z. Xiong, M. Zheng, S. Liu, L. Ma, and W. Shen, “Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting,” Nanotechnology 24(26), 265402 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B Condens. Matter (1)

J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk k, “Electronic structure of Cu2O and CuO,” Phys. Rev. B Condens. Matter 38(16), 11322–11330 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, “Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics,” Phys. Rev. Lett. 101(2), 026801 (2008).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

M. Haluška, D. Obergfell, J. C. Meyer, G. Scalia, G. Ulbricht, B. Krauss, D. H. Chae, T. Lohmann, M. Lebert, M. Kaempgen, M. Hulman, J. Smet, S. Roth, and K. von Klitzing, “Investigation of the shift of Raman modes of graphene flakes,” Phys. Status Solidi B 244(11), 4143–4146 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic flow diagram to fabricate the CuxO/GO sample. Control CuxO sample without the procedure of GO deposition was also fabricated for comparison.
Fig. 2
Fig. 2 (a) SEM image of the CuxO structure (b) SEM image of the CuxO/GO structure (c) and (d) are the elemental analysis of CuxO and CuxO/GO, respectively.
Fig. 3
Fig. 3 (a) The Raman spectra of GO, CuxO and CuxO/GO. (b) the enlarged view of (a) from 200 cm−1 to 800 cm−1.
Fig. 4
Fig. 4 The H2 evolution rates of samples with and without GO. The inset depicts that the negative fixed charge in GO can repel photo-generated electrons from the surface, and reduce the probability of recombination of electrons-hole pairs at the surface.
Fig. 5
Fig. 5 Reflectance spectra of the CuxO and CuxO/GO. GO doesn’t contribute additional absorption for the most part of white light.
Fig. 6
Fig. 6 PL spectra of samples CuxO and CuxO/GO. The intensity of PL of CuxO with GO can be enhanced as much as 2.85 fold as compared with CuxO without GO.
Fig. 7
Fig. 7 The absorbance of GO suspension. The main absorption region is UV rather than visible light.

Metrics