Abstract

A magneto-metasurface with nonreciprocal terahertz (THz) transmission has been proposed to form a THz isolator. Importantly, we have discussed the two necessary conditions for THz nonreciprocal transmission in the metasurface: (1) There should be magneto-optical responses for THz waves in the metasurface; (2) The transmission system of the metasurface needs to be asymmetric for forward and backward waves. These two conditions lead to the time reversal symmetry breaking of system, and the magnetoplasmon mode splitting and nonreciprocal resonance enhancement can be observed in the asymmetry magneto-metasurface. Moreover, the isolation dependences and tunability on the external magnetic field and temperature have also been investigated, which shows that the best operating state with a high isolation can be designed. The numerical simulations show a maximum isolation of 43 dB and a 10 dB operating bandwidth of 20 GHz under an external magnetic field of 0.3 T, and the insertion loss is smaller than 1.79 dB. This low-loss, high isolation, easy coupling THz isolator has broadly potentials for THz application systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing

Sai Chen, Fei Fan, Xiaotong He, Meng Chen, and Shengjiang Chang
Appl. Opt. 54(31) 9177-9182 (2015)

Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens

Fei Fan, Sai Chen, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 21(7) 8614-8621 (2013)

Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb

Fei Fan, Shi-Tong Xu, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 24(23) 26431-26443 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Chen and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express 18(4), 3762–3767 (2010).
    [Crossref] [PubMed]
  2. T. T. Lv, Z. Zhu, J. H. Shi, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Optically controlled background-free terahertz switching in chiral metamaterial,” Opt. Lett. 39(10), 3066–3069 (2014).
    [Crossref] [PubMed]
  3. F. Fan, Y. Hou, Z. W. Jiang, X. H. Wang, and S. J. Chang, “Terahertz modulator based on insulator-metal transition in photonic crystal waveguide,” Appl. Opt. 51(20), 4589–4596 (2012).
    [Crossref] [PubMed]
  4. J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, and Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express 19(27), 26666–26671 (2011).
    [Crossref] [PubMed]
  5. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  6. F. Fan, Z. Guo, J. Bai, X. Wang, and S. Chang, “Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller,” J. Opt. Soc. Am. B 28(4), 697–702 (2011).
    [Crossref]
  7. N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38(6), 908–910 (2013).
    [Crossref] [PubMed]
  8. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  9. Z. Huang, E. P. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39(4), 793–796 (2014).
    [Crossref] [PubMed]
  10. F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
    [Crossref] [PubMed]
  11. M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
    [Crossref] [PubMed]
  12. F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
    [Crossref] [PubMed]
  13. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  14. W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
    [Crossref] [PubMed]
  15. S. Liu, H. X. Xu, H. C. Zhang, and T. J. Cui, “Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface,” Opt. Express 22(11), 13403–13417 (2014).
    [Crossref] [PubMed]
  16. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  17. F. Fan, S. Chang, W. Gu, X. Wang, and A. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24(22), 2080–2083 (2012).
    [Crossref]
  18. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
    [Crossref]
  19. C. Jansen, I. A. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
    [Crossref]
  20. G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
    [Crossref]
  21. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37(11), 1895–1897 (2012).
    [Crossref] [PubMed]
  22. B. Hu, J. Tao, Y. Zhang, and Q. J. Wang, “Magneto-plasmonics in graphene-dielectric sandwich,” Opt. Express 22(18), 21727–21738 (2014).
    [Crossref] [PubMed]
  23. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
    [Crossref] [PubMed]
  24. G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett. 96(8), 081915 (2010).
    [Crossref]
  25. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
    [Crossref]
  26. E. Atmatzakis, N. Papasimakis, V. A. Fedotov, and N. I. Zheludev, “Giant Kerr Rotation Enhancement in Magneto-plasmonic Metamaterials.” in Proceedings of CLEO: Science and Innovations. 2014 (Optical Society of America, 2014), pp. u1H-u6H.
  27. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
    [Crossref] [PubMed]
  28. B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
    [Crossref]
  29. M. Berent, A. A. Rangelov, and N. V. Vitanov, “Broadband Faraday isolator,” J. Opt. Soc. Am. A 30(1), 149–153 (2013).
    [Crossref] [PubMed]
  30. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
    [Crossref] [PubMed]
  31. H. Zhu and C. Jiang, “Nonreciprocal extraordinary optical transmission through subwavelength slits in metallic film,” Opt. Lett. 36(8), 1308–1310 (2011).
    [Crossref] [PubMed]
  32. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
    [Crossref] [PubMed]
  33. K. Zhang and D. Li, “Electromagnetic Waves in Dispersive Media and Anisotropic Media,” in Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 475–576.

2014 (6)

2013 (9)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

M. Berent, A. A. Rangelov, and N. V. Vitanov, “Broadband Faraday isolator,” J. Opt. Soc. Am. A 30(1), 149–153 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38(6), 908–910 (2013).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref] [PubMed]

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

F. Fan, W. H. Gu, S. Chen, X. H. Wang, and S. J. Chang, “State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping,” Opt. Lett. 38(9), 1582–1584 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (5)

2010 (4)

D. Chen and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express 18(4), 3762–3767 (2010).
[Crossref] [PubMed]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[Crossref] [PubMed]

G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett. 96(8), 081915 (2010).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

2009 (1)

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[Crossref]

2006 (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

Akimov, I. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Al-Naib, I. A.

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

C. Jansen, I. A. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

Armelles, G.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Astley, V.

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Bai, J.

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Beck, M.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
[Crossref]

Belotelov, V. I.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Berent, M.

Bolivar, P. H.

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Born, N.

N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38(6), 908–910 (2013).
[Crossref] [PubMed]

C. Jansen, I. A. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Camley, R. E.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[Crossref]

Cao, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

Carelli, P.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
[Crossref]

Cebollada, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Celinski, Z.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[Crossref]

Chan, H. P.

Chang, S.

F. Fan, S. Chang, W. Gu, X. Wang, and A. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24(22), 2080–2083 (2012).
[Crossref]

F. Fan, Z. Guo, J. Bai, X. Wang, and S. Chang, “Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller,” J. Opt. Soc. Am. B 28(4), 697–702 (2011).
[Crossref]

Chang, S. J.

Chen, A.

F. Fan, S. Chang, W. Gu, X. Wang, and A. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24(22), 2080–2083 (2012).
[Crossref]

Chen, D.

Chen, H.

Chen, H. T.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, S.

Chen, X.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Cibella, S.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
[Crossref]

Cong, L.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Cui, T. J.

Dregely, D.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Du, G. X.

G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett. 96(8), 081915 (2010).
[Crossref]

Faist, J.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
[Crossref]

Fan, F.

Feng, Y.

Fukuda, H.

G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett. 96(8), 081915 (2010).
[Crossref]

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Garcia-Martin, J.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Giessen, H.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Gómez Rivas, J.

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gu, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Gu, W.

F. Fan, S. Chang, W. Gu, X. Wang, and A. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24(22), 2080–2083 (2012).
[Crossref]

Gu, W. H.

Guan, C. Y.

Guo, Z.

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Han, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

He, M.

Hou, Y.

Hu, B.

Huang, L.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Huang, Z.

Janke, C.

Jansen, C.

C. Jansen, I. A. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

Jiang, C.

Jiang, T.

Jiang, Z. W.

Jin, G.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[Crossref] [PubMed]

Koch, M.

N. Born, M. Reuter, M. Koch, and M. Scheller, “High-Q terahertz bandpass filters based on coherently interfering metasurface reflections,” Opt. Lett. 38(6), 908–910 (2013).
[Crossref] [PubMed]

C. Jansen, I. A. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Kuanr, B. K.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[Crossref]

Kurz, H.

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Leoni, R.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
[Crossref]

Liu, S.

Lv, T. T.

Maissen, C.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
[Crossref]

Marson, R.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[Crossref]

Mishra, S. R.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[Crossref]

Mittleman, D. M.

Morandotti, R.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

Mori, T.

G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett. 96(8), 081915 (2010).
[Crossref]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[Crossref] [PubMed]

Nickel, D.

Ozturk, Y.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Park, H.

Parrott, E. P.

Peccianti, M.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Qiu, C.

Rangelov, A. A.

Reuter, M.

Saito, S.

G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett. 96(8), 081915 (2010).
[Crossref]

Scalari, G.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
[Crossref]

Scheller, M.

Shalaby, M.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shi, J. H.

Shu, J.

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[Crossref] [PubMed]

Singh, R.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Suzuki, M.

G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett. 96(8), 081915 (2010).
[Crossref]

Takahashi, M.

G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett. 96(8), 081915 (2010).
[Crossref]

Tan, Q.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Tao, J.

Taylor, A. J.

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Tian, Z.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Valmorra, F.

G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
[Crossref]

Veerakumar, V.

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[Crossref]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Vitanov, N. V.

Wang, Q. J.

Wang, X.

F. Fan, S. Chang, W. Gu, X. Wang, and A. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24(22), 2080–2083 (2012).
[Crossref]

F. Fan, Z. Guo, J. Bai, X. Wang, and S. Chang, “Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller,” J. Opt. Soc. Am. B 28(4), 697–702 (2011).
[Crossref]

Wang, X. H.

Wang, Z. P.

Wehlus, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Weiss, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Xu, H. X.

Xu, Q.

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Zentgraf, T.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, H. C.

Zhang, S.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

Zhang, X.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, Y.

Zhao, J.

Zhu, B.

Zhu, H.

Zhu, Z.

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

C. Jansen, I. A. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array,” Appl. Phys. Lett. 96(8), 081915 (2010).
[Crossref]

B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Fan, S. Chang, W. Gu, X. Wang, and A. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24(22), 2080–2083 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmonpolariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Nat. Commun. (2)

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref] [PubMed]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

G. Scalari, C. Maissen, S. Cibella, R. Leoni, P. Carelli, F. Valmorra, M. Beck, and J. Faist, “Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling,” New J. Phys. 16(3), 033005 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010).
[Crossref] [PubMed]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Other (2)

E. Atmatzakis, N. Papasimakis, V. A. Fedotov, and N. I. Zheludev, “Giant Kerr Rotation Enhancement in Magneto-plasmonic Metamaterials.” in Proceedings of CLEO: Science and Innovations. 2014 (Optical Society of America, 2014), pp. u1H-u6H.

K. Zhang and D. Li, “Electromagnetic Waves in Dispersive Media and Anisotropic Media,” in Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 475–576.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic structure of the proposed isolator. (a) The 3D view of the device including the directions of the wave polarization and external magnetic field and the coordinate system in this work; (b) The geometry of the unit cell structure, D = 100 μm, T = 40 μm, L = 70 μm, P = 100 μm, h1 = 21 μm, h2 = 50 μm, d = 10 μm, and g = 30 μm.
Fig. 2
Fig. 2 (a) The real part of εx, εy and εyz and the imaginary part of εx of InSb in the THz regime with the dependence on the external magnetic field at 195K and (b) with the dependence on the temperature at 0.3 T.
Fig. 3
Fig. 3 (a) The transmission spectrum of the forward waves |S21|2 and backward waves |S12|2, when T = 195 K, B = 0.3 T, the inset picture is the isolation spectra of the isolator. (b) Steady magnetic field of the isolator at 0.68 THz when T = 195 K, B = 0.3 T in the x-z cut plane.
Fig. 4
Fig. 4 Transmission spectrums of the forward waves |S21|2 and backward waves |S12|2 in the different direction of the polarization and external magnetic field when T = 195 K, B = 0.3 T. The label such as ‘Ey-Bx’ means the polarization direction of THz waves is along the positive direction of y axis and the external magnetic field direction is along the positive direction of x axis.
Fig. 5
Fig. 5 (a) Transmission spectra of the backward waves and (b) isolation spectra under the different external magnetic field when T = 195K; (c) (d) under the different temperature when B = 0.3T; (e) (f) under the different thickness of InSb layer when B = 0.3T, T = 195K.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ ε x 0 0 0 ε y ε yz 0 ε yz ε z ]
ε x = ε ε ω p 2 ω(ω+γi) , ε y = ε z = ε ε ω p 2 (ω+γi) ω[ (ω+γi) 2 ω c 2 ] , ε yz = ε i ω p 2 ω c ω[ (ω+γi) 2 ω c 2 ] ,
N( cm -3 )=5.76× 10 14 T 1.5 exp[0.26/(2×8.625× 10 5 ×T)].
β 2 [ E x E y E z ]+[ 0 0 β 2 E z ]+ ω 2 μ 0 [ ε x 0 0 0 ε y ε yz 0 ε yz ε y ][ E x E y E z ]=0.
E x 0, E y =0, E z =0, β 1 2 = ω 2 μ 0 ε x ,
E x =0, E y =i ε yz ε y E z , β 2 2 = ω 2 μ 0 ε y 2 ε yz 2 ε y .

Metrics