Abstract

Molecular diffusion in a polymer matrix was studied to prevent degradation of photochromic reactions during repeated coloration-decoloration processes. Photochromic diarylethene was dispersed in polydimethylsiloxane (cured polymer), since it promoted exchange of damaged and fresh molecules owing to high diffusivity. The diffusion coefficient was evaluated by measuring a distribution of dye molecules that were colored within a narrow laser beam path. Temporal change of the distribution fitted well to theoretical curves that were drawn according to the 2-D solutions of Fick’s equation. The experimental results indicated a fifteen-fold enhancement of the diffusion coefficient (0.0015 mm2/s) when the polymer was swollen with toluene. Fading of this photochromic polymer was examined by repeating alternative irradiation of violet and green laser beams. Although a non-swollen polymer faded seriously within 1,000 photochromic cycles, a swollen polymer exhibited an excellent photochromic function even after 30,000 cycles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-enhancement and suppression of optical pulses by use of photochromism in elastomer

Mitsunori Saito and Takamasa Hamazaki
Opt. Express 24(20) 22395-22402 (2016)

Fundamental characteristics of degradation- recoverable solid-state DFB polymer laser

Hiroaki Yoshioka, Yu Yang, Hirofumi Watanabe, and Yuji Oki
Opt. Express 20(4) 4690-4696 (2012)

Photoinduced reversible optical gratings in photochromic diarylethene-doped polymeric thin films

Stefano Cattaneo, Steve Lecomte, Christian Bosshard, Germano Montemezzani, Peter Günter, Robert C. Livingston, and François Diederich
J. Opt. Soc. Am. B 19(9) 2032-2038 (2002)

References

  • View by:
  • |
  • |
  • |

  1. Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
    [Crossref]
  2. S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
    [Crossref] [PubMed]
  3. R. Elgin, B. Riegler, and R. Thomaier, “Finding the right material to resist UV-generated transmission losses in LED packaging,” Photon. Spectra 40(3), 94–101 (2006).
  4. H. Yoshioka, Y. Yang, H. Watanabe, and Y. Oki, “Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser,” Opt. Express 20(4), 4690–4696 (2012).
    [Crossref] [PubMed]
  5. M. Saito and S. Ochiai, “Stabilization of photochromic isomers by copper nanoparticles in a high-diffusivity solid matrix,” Opt. Lett. 39(18), 5366–5369 (2014).
    [Crossref]
  6. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
    [Crossref] [PubMed]
  7. H. Fudouzi and Y. Xia, “Photonic papers and inks: Color writing with colorless materials,” Adv. Mater. 15(11), 892–896 (2003).
    [Crossref]
  8. M. Saito, H. Shimatani, and H. Naruhashi, “Tunable whispering gallery mode emission from a microdroplet in elastomer,” Opt. Express 16(16), 11915–11919 (2008).
    [Crossref] [PubMed]
  9. W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010).
    [Crossref]
  10. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010).
    [Crossref] [PubMed]
  11. J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22(4), 4168–4179 (2014).
    [Crossref] [PubMed]
  12. W. L. Robb, “Thin silicone membranes--Their permeation properties and some applications,” Ann. N. Y. Acad. Sci. 146(1), 119–137 (1968).
    [Crossref] [PubMed]
  13. E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clément, and J. Néel, “Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis,” J. Membr. Sci. 92(2), 169–184 (1994).
    [Crossref]
  14. R. Muzzalupo, G. A. Ranieri, G. Golemme, and E. Drioli, “Self-diffusion measurements of organic molecules in PDMS and water in sodium alginate membranes,” J. Appl. Polym. Sci. 74(5), 1119–1128 (1999).
    [Crossref]
  15. T. C. Merkel, V. I. Bondar, K. Nagai, B. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
    [Crossref]
  16. S. A. Volyanyuk, V. L. Bezrodnyi, and E. A. Tikhonov, “Determination of the diffusion coefficients of dyes in polymer media by the absorption method with a high spatial resolution,” J. Appl. Spectrosc. 67(4), 623–628 (2000).
    [Crossref]
  17. H. Mochizuki, T. Mizokuro, N. Tanigaki, X. Mo, and T. Hiraga, “Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method,” Appl. Phys. Lett. 85(22), 5155–5157 (2004).
    [Crossref]
  18. A. Hahn, S. Günther, P. Wagener, and S. Barcikowski, “Electrochemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles,” J. Mater. Chem. 21(28), 10287–10289 (2011).
    [Crossref]
  19. T. J. Roseman, “Release of steroids from a silicone polymer,” J. Pharm. Sci. 61(1), 46–50 (1972).
    [Crossref] [PubMed]
  20. A. G. Andreopoulos and M. Plytaria, “Biomedical silicone elastomers as carriers for controlled release,” J. Biomater. Appl. 12(3), 258–271 (1998).
    [PubMed]
  21. R. K. Malcolm, S. D. McCullagh, A. D. Woolfson, S. P. Gorman, D. S. Jones, and J. Cuddy, “Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial,” J. Control. Release 97(2), 313–320 (2004).
    [Crossref] [PubMed]
  22. M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, “Bleaching and diffusion dynamics in optofluidic dye lasers,” Appl. Phys. Lett. 90(14), 143501 (2007).
    [Crossref]
  23. M. Saito, T. Nishimura, K. Sakiyama, and S. Inagaki, “Self-healing of optical functions by molecular metabolism in a swollen elastomer,” AIP Adv. 2(4), 042118 (2012).
    [Crossref]
  24. M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
    [Crossref]
  25. A. G. Andreopoulos, G. L. Polyzois, and M. Evangelatou, “Swelling properties of cross-linked maxillofacial elastomers,” J. Appl. Polym. Sci. 50(4), 729–733 (1993).
    [Crossref]
  26. T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
    [Crossref] [PubMed]
  27. M. Hoshino, F. Ebisawa, T. Yoshida, and K. Sukegawa, “Refractive index change in photochromic diarylethene derivatives and its application to optical switching devices,” J. Photochem. Photobiol. Chem. 105(1), 75–81 (1997).
    [Crossref]
  28. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
    [Crossref] [PubMed]
  29. M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
    [Crossref]
  30. A. Tork, F. Boudreault, M. Roberge, A. M. Ritcey, R. A. Lessard, and T. V. Galstian, “Photochromic behavior of spiropyran in polymer matrices,” Appl. Opt. 40(8), 1180–1186 (2001).
    [Crossref] [PubMed]
  31. H. Nakashima and M. Irie, “Synthesis of silsesquioxanes having photochromic diarylethene pendant group,” Macromol. Rapid Commun. 18(8), 625–633 (1997).
    [Crossref]
  32. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, 1960) Part III.
  33. M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
    [Crossref]

2014 (2)

2013 (1)

M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
[Crossref]

2012 (2)

M. Saito, T. Nishimura, K. Sakiyama, and S. Inagaki, “Self-healing of optical functions by molecular metabolism in a swollen elastomer,” AIP Adv. 2(4), 042118 (2012).
[Crossref]

H. Yoshioka, Y. Yang, H. Watanabe, and Y. Oki, “Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser,” Opt. Express 20(4), 4690–4696 (2012).
[Crossref] [PubMed]

2011 (1)

A. Hahn, S. Günther, P. Wagener, and S. Barcikowski, “Electrochemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles,” J. Mater. Chem. 21(28), 10287–10289 (2011).
[Crossref]

2010 (2)

2008 (1)

2007 (2)

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, “Bleaching and diffusion dynamics in optofluidic dye lasers,” Appl. Phys. Lett. 90(14), 143501 (2007).
[Crossref]

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

2006 (1)

R. Elgin, B. Riegler, and R. Thomaier, “Finding the right material to resist UV-generated transmission losses in LED packaging,” Photon. Spectra 40(3), 94–101 (2006).

2005 (1)

T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
[Crossref] [PubMed]

2004 (2)

R. K. Malcolm, S. D. McCullagh, A. D. Woolfson, S. P. Gorman, D. S. Jones, and J. Cuddy, “Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial,” J. Control. Release 97(2), 313–320 (2004).
[Crossref] [PubMed]

H. Mochizuki, T. Mizokuro, N. Tanigaki, X. Mo, and T. Hiraga, “Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method,” Appl. Phys. Lett. 85(22), 5155–5157 (2004).
[Crossref]

2003 (1)

H. Fudouzi and Y. Xia, “Photonic papers and inks: Color writing with colorless materials,” Adv. Mater. 15(11), 892–896 (2003).
[Crossref]

2001 (1)

2000 (5)

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
[Crossref] [PubMed]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref] [PubMed]

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
[Crossref] [PubMed]

T. C. Merkel, V. I. Bondar, K. Nagai, B. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

S. A. Volyanyuk, V. L. Bezrodnyi, and E. A. Tikhonov, “Determination of the diffusion coefficients of dyes in polymer media by the absorption method with a high spatial resolution,” J. Appl. Spectrosc. 67(4), 623–628 (2000).
[Crossref]

1999 (1)

R. Muzzalupo, G. A. Ranieri, G. Golemme, and E. Drioli, “Self-diffusion measurements of organic molecules in PDMS and water in sodium alginate membranes,” J. Appl. Polym. Sci. 74(5), 1119–1128 (1999).
[Crossref]

1998 (1)

A. G. Andreopoulos and M. Plytaria, “Biomedical silicone elastomers as carriers for controlled release,” J. Biomater. Appl. 12(3), 258–271 (1998).
[PubMed]

1997 (3)

M. Hoshino, F. Ebisawa, T. Yoshida, and K. Sukegawa, “Refractive index change in photochromic diarylethene derivatives and its application to optical switching devices,” J. Photochem. Photobiol. Chem. 105(1), 75–81 (1997).
[Crossref]

H. Nakashima and M. Irie, “Synthesis of silsesquioxanes having photochromic diarylethene pendant group,” Macromol. Rapid Commun. 18(8), 625–633 (1997).
[Crossref]

Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
[Crossref]

1994 (1)

E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clément, and J. Néel, “Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis,” J. Membr. Sci. 92(2), 169–184 (1994).
[Crossref]

1993 (1)

A. G. Andreopoulos, G. L. Polyzois, and M. Evangelatou, “Swelling properties of cross-linked maxillofacial elastomers,” J. Appl. Polym. Sci. 50(4), 729–733 (1993).
[Crossref]

1992 (1)

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[Crossref]

1972 (1)

T. J. Roseman, “Release of steroids from a silicone polymer,” J. Pharm. Sci. 61(1), 46–50 (1972).
[Crossref] [PubMed]

1968 (1)

W. L. Robb, “Thin silicone membranes--Their permeation properties and some applications,” Ann. N. Y. Acad. Sci. 146(1), 119–137 (1968).
[Crossref] [PubMed]

Andreopoulos, A. G.

A. G. Andreopoulos and M. Plytaria, “Biomedical silicone elastomers as carriers for controlled release,” J. Biomater. Appl. 12(3), 258–271 (1998).
[PubMed]

A. G. Andreopoulos, G. L. Polyzois, and M. Evangelatou, “Swelling properties of cross-linked maxillofacial elastomers,” J. Appl. Polym. Sci. 50(4), 729–733 (1993).
[Crossref]

Balmer, T. E.

T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
[Crossref] [PubMed]

Balslev, S.

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, “Bleaching and diffusion dynamics in optofluidic dye lasers,” Appl. Phys. Lett. 90(14), 143501 (2007).
[Crossref]

Barcikowski, S.

A. Hahn, S. Günther, P. Wagener, and S. Barcikowski, “Electrochemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles,” J. Mater. Chem. 21(28), 10287–10289 (2011).
[Crossref]

Baumberg, J. J.

Bezrodnyi, V. L.

S. A. Volyanyuk, V. L. Bezrodnyi, and E. A. Tikhonov, “Determination of the diffusion coefficients of dyes in polymer media by the absorption method with a high spatial resolution,” J. Appl. Spectrosc. 67(4), 623–628 (2000).
[Crossref]

Bondar, V. I.

T. C. Merkel, V. I. Bondar, K. Nagai, B. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Bosman, E.

Boudreault, F.

Clément, R.

E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clément, and J. Néel, “Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis,” J. Membr. Sci. 92(2), 169–184 (1994).
[Crossref]

Cuddy, J.

R. K. Malcolm, S. D. McCullagh, A. D. Woolfson, S. P. Gorman, D. S. Jones, and J. Cuddy, “Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial,” J. Control. Release 97(2), 313–320 (2004).
[Crossref] [PubMed]

Delamarche, E.

T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
[Crossref] [PubMed]

Drioli, E.

R. Muzzalupo, G. A. Ranieri, G. Golemme, and E. Drioli, “Self-diffusion measurements of organic molecules in PDMS and water in sodium alginate membranes,” J. Appl. Polym. Sci. 74(5), 1119–1128 (1999).
[Crossref]

Ebisawa, F.

M. Hoshino, F. Ebisawa, T. Yoshida, and K. Sukegawa, “Refractive index change in photochromic diarylethene derivatives and its application to optical switching devices,” J. Photochem. Photobiol. Chem. 105(1), 75–81 (1997).
[Crossref]

Elgin, R.

R. Elgin, B. Riegler, and R. Thomaier, “Finding the right material to resist UV-generated transmission losses in LED packaging,” Photon. Spectra 40(3), 94–101 (2006).

Evangelatou, M.

A. G. Andreopoulos, G. L. Polyzois, and M. Evangelatou, “Swelling properties of cross-linked maxillofacial elastomers,” J. Appl. Polym. Sci. 50(4), 729–733 (1993).
[Crossref]

Favre, E.

E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clément, and J. Néel, “Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis,” J. Membr. Sci. 92(2), 169–184 (1994).
[Crossref]

Freeman, B.

T. C. Merkel, V. I. Bondar, K. Nagai, B. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Fudouzi, H.

H. Fudouzi and Y. Xia, “Photonic papers and inks: Color writing with colorless materials,” Adv. Mater. 15(11), 892–896 (2003).
[Crossref]

Fujiuchi, A.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

Galstian, T. V.

Gersborg-Hansen, M.

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, “Bleaching and diffusion dynamics in optofluidic dye lasers,” Appl. Phys. Lett. 90(14), 143501 (2007).
[Crossref]

Gibbons, N.

Golemme, G.

R. Muzzalupo, G. A. Ranieri, G. Golemme, and E. Drioli, “Self-diffusion measurements of organic molecules in PDMS and water in sodium alginate membranes,” J. Appl. Polym. Sci. 74(5), 1119–1128 (1999).
[Crossref]

Gorman, S. P.

R. K. Malcolm, S. D. McCullagh, A. D. Woolfson, S. P. Gorman, D. S. Jones, and J. Cuddy, “Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial,” J. Control. Release 97(2), 313–320 (2004).
[Crossref] [PubMed]

Günther, S.

A. Hahn, S. Günther, P. Wagener, and S. Barcikowski, “Electrochemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles,” J. Mater. Chem. 21(28), 10287–10289 (2011).
[Crossref]

Hahn, A.

A. Hahn, S. Günther, P. Wagener, and S. Barcikowski, “Electrochemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles,” J. Mater. Chem. 21(28), 10287–10289 (2011).
[Crossref]

Hanazawa, M.

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[Crossref]

Hiraga, T.

H. Mochizuki, T. Mizokuro, N. Tanigaki, X. Mo, and T. Hiraga, “Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method,” Appl. Phys. Lett. 85(22), 5155–5157 (2004).
[Crossref]

Horikawa, Y.

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[Crossref]

Hoshino, M.

M. Hoshino, F. Ebisawa, T. Yoshida, and K. Sukegawa, “Refractive index change in photochromic diarylethene derivatives and its application to optical switching devices,” J. Photochem. Photobiol. Chem. 105(1), 75–81 (1997).
[Crossref]

Inagaki, S.

M. Saito, T. Nishimura, K. Sakiyama, and S. Inagaki, “Self-healing of optical functions by molecular metabolism in a swollen elastomer,” AIP Adv. 2(4), 042118 (2012).
[Crossref]

Irie, M.

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
[Crossref] [PubMed]

H. Nakashima and M. Irie, “Synthesis of silsesquioxanes having photochromic diarylethene pendant group,” Macromol. Rapid Commun. 18(8), 625–633 (1997).
[Crossref]

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[Crossref]

Jones, D. S.

R. K. Malcolm, S. D. McCullagh, A. D. Woolfson, S. P. Gorman, D. S. Jones, and J. Cuddy, “Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial,” J. Control. Release 97(2), 313–320 (2004).
[Crossref] [PubMed]

Joseph, J.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref] [PubMed]

Kalathimekkad, S.

Kolle, M.

Kornbluh, R.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref] [PubMed]

Kristensen, A.

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, “Bleaching and diffusion dynamics in optofluidic dye lasers,” Appl. Phys. Lett. 90(14), 143501 (2007).
[Crossref]

Lessard, R. A.

Malcolm, R. K.

R. K. Malcolm, S. D. McCullagh, A. D. Woolfson, S. P. Gorman, D. S. Jones, and J. Cuddy, “Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial,” J. Control. Release 97(2), 313–320 (2004).
[Crossref] [PubMed]

McCullagh, S. D.

R. K. Malcolm, S. D. McCullagh, A. D. Woolfson, S. P. Gorman, D. S. Jones, and J. Cuddy, “Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial,” J. Control. Release 97(2), 313–320 (2004).
[Crossref] [PubMed]

Merkel, T. C.

T. C. Merkel, V. I. Bondar, K. Nagai, B. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Michel, B.

T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
[Crossref] [PubMed]

Missinne, J.

Mizokuro, T.

H. Mochizuki, T. Mizokuro, N. Tanigaki, X. Mo, and T. Hiraga, “Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method,” Appl. Phys. Lett. 85(22), 5155–5157 (2004).
[Crossref]

Mo, X.

H. Mochizuki, T. Mizokuro, N. Tanigaki, X. Mo, and T. Hiraga, “Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method,” Appl. Phys. Lett. 85(22), 5155–5157 (2004).
[Crossref]

Mochizuki, H.

H. Mochizuki, T. Mizokuro, N. Tanigaki, X. Mo, and T. Hiraga, “Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method,” Appl. Phys. Lett. 85(22), 5155–5157 (2004).
[Crossref]

Mortensen, N. A.

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, “Bleaching and diffusion dynamics in optofluidic dye lasers,” Appl. Phys. Lett. 90(14), 143501 (2007).
[Crossref]

Muzzalupo, R.

R. Muzzalupo, G. A. Ranieri, G. Golemme, and E. Drioli, “Self-diffusion measurements of organic molecules in PDMS and water in sodium alginate membranes,” J. Appl. Polym. Sci. 74(5), 1119–1128 (1999).
[Crossref]

Nagai, K.

T. C. Merkel, V. I. Bondar, K. Nagai, B. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Nakashima, H.

H. Nakashima and M. Irie, “Synthesis of silsesquioxanes having photochromic diarylethene pendant group,” Macromol. Rapid Commun. 18(8), 625–633 (1997).
[Crossref]

Naruhashi, H.

Néel, J.

E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clément, and J. Néel, “Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis,” J. Membr. Sci. 92(2), 169–184 (1994).
[Crossref]

Nguygen, Q. T.

E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clément, and J. Néel, “Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis,” J. Membr. Sci. 92(2), 169–184 (1994).
[Crossref]

Nishimura, T.

M. Saito, T. Nishimura, K. Sakiyama, and S. Inagaki, “Self-healing of optical functions by molecular metabolism in a swollen elastomer,” AIP Adv. 2(4), 042118 (2012).
[Crossref]

Ochiai, S.

Oki, Y.

Ota, N.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

Pei, Q.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref] [PubMed]

Pelrine, R.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref] [PubMed]

Pinnau, I.

T. C. Merkel, V. I. Bondar, K. Nagai, B. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Plytaria, M.

A. G. Andreopoulos and M. Plytaria, “Biomedical silicone elastomers as carriers for controlled release,” J. Biomater. Appl. 12(3), 258–271 (1998).
[PubMed]

Polyzois, G. L.

A. G. Andreopoulos, G. L. Polyzois, and M. Evangelatou, “Swelling properties of cross-linked maxillofacial elastomers,” J. Appl. Polym. Sci. 50(4), 729–733 (1993).
[Crossref]

Psaltis, D.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010).
[Crossref]

Quake, S. R.

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
[Crossref] [PubMed]

Ranieri, G. A.

R. Muzzalupo, G. A. Ranieri, G. Golemme, and E. Drioli, “Self-diffusion measurements of organic molecules in PDMS and water in sodium alginate membranes,” J. Appl. Polym. Sci. 74(5), 1119–1128 (1999).
[Crossref]

Riegler, B.

R. Elgin, B. Riegler, and R. Thomaier, “Finding the right material to resist UV-generated transmission losses in LED packaging,” Photon. Spectra 40(3), 94–101 (2006).

Ritcey, A. M.

Robb, W. L.

W. L. Robb, “Thin silicone membranes--Their permeation properties and some applications,” Ann. N. Y. Acad. Sci. 146(1), 119–137 (1968).
[Crossref] [PubMed]

Roberge, M.

Roseman, T. J.

T. J. Roseman, “Release of steroids from a silicone polymer,” J. Pharm. Sci. 61(1), 46–50 (1972).
[Crossref] [PubMed]

Saito, M.

M. Saito and S. Ochiai, “Stabilization of photochromic isomers by copper nanoparticles in a high-diffusivity solid matrix,” Opt. Lett. 39(18), 5366–5369 (2014).
[Crossref]

M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
[Crossref]

M. Saito, T. Nishimura, K. Sakiyama, and S. Inagaki, “Self-healing of optical functions by molecular metabolism in a swollen elastomer,” AIP Adv. 2(4), 042118 (2012).
[Crossref]

M. Saito, H. Shimatani, and H. Naruhashi, “Tunable whispering gallery mode emission from a microdroplet in elastomer,” Opt. Express 16(16), 11915–11919 (2008).
[Crossref] [PubMed]

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

Sakiyama, K.

M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
[Crossref]

M. Saito, T. Nishimura, K. Sakiyama, and S. Inagaki, “Self-healing of optical functions by molecular metabolism in a swollen elastomer,” AIP Adv. 2(4), 042118 (2012).
[Crossref]

Schaetzel, P.

E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clément, and J. Néel, “Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis,” J. Membr. Sci. 92(2), 169–184 (1994).
[Crossref]

Scherer, A.

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
[Crossref] [PubMed]

Schmid, H.

T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
[Crossref] [PubMed]

Shimatani, H.

Song, W.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010).
[Crossref]

Spencer, N. D.

T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
[Crossref] [PubMed]

Steiner, U.

Stutz, R.

T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
[Crossref] [PubMed]

Sukegawa, K.

M. Hoshino, F. Ebisawa, T. Yoshida, and K. Sukegawa, “Refractive index change in photochromic diarylethene derivatives and its application to optical switching devices,” J. Photochem. Photobiol. Chem. 105(1), 75–81 (1997).
[Crossref]

Sumiya, R.

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[Crossref]

Tanigaki, N.

H. Mochizuki, T. Mizokuro, N. Tanigaki, X. Mo, and T. Hiraga, “Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method,” Appl. Phys. Lett. 85(22), 5155–5157 (2004).
[Crossref]

Thomaier, R.

R. Elgin, B. Riegler, and R. Thomaier, “Finding the right material to resist UV-generated transmission losses in LED packaging,” Photon. Spectra 40(3), 94–101 (2006).

Tikhonov, E. A.

S. A. Volyanyuk, V. L. Bezrodnyi, and E. A. Tikhonov, “Determination of the diffusion coefficients of dyes in polymer media by the absorption method with a high spatial resolution,” J. Appl. Spectrosc. 67(4), 623–628 (2000).
[Crossref]

Tork, A.

Tsubokura, Y.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

Van Hoe, B.

Van Steenberge, G.

Vanfleteren, J.

Volyanyuk, S. A.

S. A. Volyanyuk, V. L. Bezrodnyi, and E. A. Tikhonov, “Determination of the diffusion coefficients of dyes in polymer media by the absorption method with a high spatial resolution,” J. Appl. Spectrosc. 67(4), 623–628 (2000).
[Crossref]

Wagener, P.

A. Hahn, S. Günther, P. Wagener, and S. Barcikowski, “Electrochemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles,” J. Mater. Chem. 21(28), 10287–10289 (2011).
[Crossref]

Watanabe, H.

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
[Crossref]

Wolf, H.

T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
[Crossref] [PubMed]

Woolfson, A. D.

R. K. Malcolm, S. D. McCullagh, A. D. Woolfson, S. P. Gorman, D. S. Jones, and J. Cuddy, “Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial,” J. Control. Release 97(2), 313–320 (2004).
[Crossref] [PubMed]

Xia, Y.

H. Fudouzi and Y. Xia, “Photonic papers and inks: Color writing with colorless materials,” Adv. Mater. 15(11), 892–896 (2003).
[Crossref]

Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
[Crossref]

Yang, Y.

Yoshida, T.

M. Hoshino, F. Ebisawa, T. Yoshida, and K. Sukegawa, “Refractive index change in photochromic diarylethene derivatives and its application to optical switching devices,” J. Photochem. Photobiol. Chem. 105(1), 75–81 (1997).
[Crossref]

Yoshioka, H.

Zheng, B.

Adv. Mater. (1)

H. Fudouzi and Y. Xia, “Photonic papers and inks: Color writing with colorless materials,” Adv. Mater. 15(11), 892–896 (2003).
[Crossref]

AIP Adv. (1)

M. Saito, T. Nishimura, K. Sakiyama, and S. Inagaki, “Self-healing of optical functions by molecular metabolism in a swollen elastomer,” AIP Adv. 2(4), 042118 (2012).
[Crossref]

Ann. N. Y. Acad. Sci. (1)

W. L. Robb, “Thin silicone membranes--Their permeation properties and some applications,” Ann. N. Y. Acad. Sci. 146(1), 119–137 (1968).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010).
[Crossref]

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, “Nanostructured solid-liquid compounds with rewritable optical functions,” Appl. Phys. Lett. 91(6), 061114 (2007).
[Crossref]

H. Mochizuki, T. Mizokuro, N. Tanigaki, X. Mo, and T. Hiraga, “Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method,” Appl. Phys. Lett. 85(22), 5155–5157 (2004).
[Crossref]

M. Gersborg-Hansen, S. Balslev, N. A. Mortensen, and A. Kristensen, “Bleaching and diffusion dynamics in optofluidic dye lasers,” Appl. Phys. Lett. 90(14), 143501 (2007).
[Crossref]

Chem. Rev. (1)

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000).
[Crossref] [PubMed]

J. Appl. Polym. Sci. (2)

A. G. Andreopoulos, G. L. Polyzois, and M. Evangelatou, “Swelling properties of cross-linked maxillofacial elastomers,” J. Appl. Polym. Sci. 50(4), 729–733 (1993).
[Crossref]

R. Muzzalupo, G. A. Ranieri, G. Golemme, and E. Drioli, “Self-diffusion measurements of organic molecules in PDMS and water in sodium alginate membranes,” J. Appl. Polym. Sci. 74(5), 1119–1128 (1999).
[Crossref]

J. Appl. Spectrosc. (1)

S. A. Volyanyuk, V. L. Bezrodnyi, and E. A. Tikhonov, “Determination of the diffusion coefficients of dyes in polymer media by the absorption method with a high spatial resolution,” J. Appl. Spectrosc. 67(4), 623–628 (2000).
[Crossref]

J. Biomater. Appl. (1)

A. G. Andreopoulos and M. Plytaria, “Biomedical silicone elastomers as carriers for controlled release,” J. Biomater. Appl. 12(3), 258–271 (1998).
[PubMed]

J. Chem. Soc. Chem. Commun. (1)

M. Hanazawa, R. Sumiya, Y. Horikawa, and M. Irie, “Thermally irreversible photochromic systems. Reversible photocyclization of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocycloalkene derivatives,” J. Chem. Soc. Chem. Commun. 3, 206–207 (1992).
[Crossref]

J. Control. Release (1)

R. K. Malcolm, S. D. McCullagh, A. D. Woolfson, S. P. Gorman, D. S. Jones, and J. Cuddy, “Controlled release of a model antibacterial drug from a novel self-lubricating silicone biomaterial,” J. Control. Release 97(2), 313–320 (2004).
[Crossref] [PubMed]

J. Mater. Chem. (1)

A. Hahn, S. Günther, P. Wagener, and S. Barcikowski, “Electrochemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles,” J. Mater. Chem. 21(28), 10287–10289 (2011).
[Crossref]

J. Membr. Sci. (1)

E. Favre, P. Schaetzel, Q. T. Nguygen, R. Clément, and J. Néel, “Sorption, diffusion and vapor permeation of various penetrants through dense poly(dimethylsiloxane) membranes: a transport analysis,” J. Membr. Sci. 92(2), 169–184 (1994).
[Crossref]

J. Opt. (1)

M. Saito and K. Sakiyama, “Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency,” J. Opt. 15(10), 105404 (2013).
[Crossref]

J. Pharm. Sci. (1)

T. J. Roseman, “Release of steroids from a silicone polymer,” J. Pharm. Sci. 61(1), 46–50 (1972).
[Crossref] [PubMed]

J. Photochem. Photobiol. Chem. (1)

M. Hoshino, F. Ebisawa, T. Yoshida, and K. Sukegawa, “Refractive index change in photochromic diarylethene derivatives and its application to optical switching devices,” J. Photochem. Photobiol. Chem. 105(1), 75–81 (1997).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

T. C. Merkel, V. I. Bondar, K. Nagai, B. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. Polym. Sci., B, Polym. Phys. 38(3), 415–434 (2000).
[Crossref]

Langmuir (2)

T. E. Balmer, H. Schmid, R. Stutz, E. Delamarche, B. Michel, N. D. Spencer, and H. Wolf, “Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP),” Langmuir 21(2), 622–632 (2005).
[Crossref] [PubMed]

Y. Xia and G. M. Whitesides, “Extending microcontact printing as a microlithographic technique,” Langmuir 13(7), 2059–2067 (1997).
[Crossref]

Macromol. Rapid Commun. (1)

H. Nakashima and M. Irie, “Synthesis of silsesquioxanes having photochromic diarylethene pendant group,” Macromol. Rapid Commun. 18(8), 625–633 (1997).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Photon. Spectra (1)

R. Elgin, B. Riegler, and R. Thomaier, “Finding the right material to resist UV-generated transmission losses in LED packaging,” Photon. Spectra 40(3), 94–101 (2006).

Science (2)

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science 287(5454), 836–839 (2000).
[Crossref] [PubMed]

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290(5496), 1536–1540 (2000).
[Crossref] [PubMed]

Other (1)

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, 1960) Part III.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Structures of transparent and colored diarylethene molecules. (b) Front and side (cross-sectional) views of the sample that was prepared for evaluation of the diffusion coefficient. A violet (or green) laser beam passed through the sample center, inducing photochromic coloration (or decoloration). Transmission spectra were measured at a distance x form the center.
Fig. 2
Fig. 2 (a) Transmission spectra that were measured at different positions (x = 0, ± 2, or ± 8 mm) in the transparent sample (toluene: 60 vol%). A violet laser beam was irradiated at the sample center for 3 h. (b) Transmission spectra during the decoloration process. After the entire sample was colored with a violet laser beam, a green laser beam was irradiated at the center for 3 h. Measurements were conducted at room temperature (~30 °C).
Fig. 3
Fig. 3 Optical density distributions during the laser irradiation process of 15 h. The sample center (x = 0) was irradiated by (a, c) the violet or (b, d) green laser beam (2 or 1.5 mm diameter). The irradiation was paused momentarily for the spectral measurement at x = 0 (Δ, 3 h). The toluene concentration was (a, b) 1 or (c, d) 60 vol%. The black lines show the theoretical distributions that were calculated by assuming a diffusion coefficient of (a, b) 0.0001 or (c, d) 0.0015 mm2/s. The gray lines show initial distributions that were assumed corresponding to the laser beam diameter.
Fig. 4
Fig. 4 Optical setup for evaluating resistivity of the photochromic polymer. The violet laser beam (2 mm diameter) and the green laser beam (4 mm diameter) were aligned so that they passed through the same position in the sample. They irradiated the sample alternatively being controlled by a mechanical shutter and reflected by a glass plate. The probe beam was focused gently so that its diameter became smaller than the violet beam diameter in the sample.
Fig. 5
Fig. 5 (a, b) Transmission spectra of the colored and decolored states. The violet and green laser beams (0.6 mW/mm2) were irradiated alternatively every 1 s. The gray spectra were measured in the first photochromic cycle, and the black spectra were measured after 1,000 cycles. The sample contained diarylethene of 10−4 mol/l and toluene of (a) 1 or (b) 60 vol%. (c) Transmittances (530 nm) of the colored and decolored states that were measured during the repeated laser irradiation processes (irradiation duration: 1 s). The toluene concentration was 1 (●), 20 (), 40 (▲), or 60 vol% (). (d) Transmittance change during the slow photochromic process in which the violet and green laser beams of 0.06 mW/mm2 were irradiated alternatively every 60 s.
Fig. 6
Fig. 6 Transmittance change of the sample with a large volume (50 ml) and a high dye- concentration (2 × 10−4 mol/l). The violet and green laser beams of (a, b) 0.6 or (c, d) 0.06 mW/mm2 were irradiated alternatively every (a, b) 1 or (c, d) 60 s. The gray lines show the original transmission spectra. The solid and dashed lines in (a) show the spectra that were measured in the 2,000th cycle and 1 h after that. The black and gray circles in (b) show the transmittances (530 nm) during the repetition processes with no or occasional restoration times. The dotted and solid spectra in (c) were measured after 10,000 and 30,000 cycles. The circles in (d) show the transmittance change (530 nm) during the 30,000 cycles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

c t =D 2 c=D 1 r r ( r c r ) ,  

Metrics