Abstract

We report an electro-optic photonic integrated circuit which can perform the exclusive (XOR) logic operation based on two silicon parallel-cascaded microring resonators (MRRs) fabricated on the silicon-on-insulator (SOI) platform. PIN diodes embedded around MRRs are employed to achieve the carrier injection modulation. Two electrical pulse sequences regarded as two operands of operations are applied to PIN diodes to modulate two MRRs through the free carrier dispersion effect. The final operation result of two operands is output at the Output port in the form of light. The scattering matrix method is employed to establish numerical model of the device, and numerical simulator SG-framework is used to simulate the electrical characteristics of the PIN diodes. XOR operation with the speed of 100Mbps is demonstrated successfully.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators

Yonghui Tian, Lei Zhang, and Lin Yang
Opt. Express 20(15) 16794-16800 (2012)

Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations

Lei Zhang, Jianfeng Ding, Yonghui Tian, Ruiqiang Ji, Lin Yang, Hongtao Chen, Ping Zhou, Yangyang Lu, Weiwei Zhu, and Rui Min
Opt. Express 20(11) 11605-11614 (2012)

Demonstration of electro-optic half-adder using silicon photonic integrated circuits

Yonghui Tian, Lei Zhang, Jianfeng Ding, and Lin Yang
Opt. Express 22(6) 6958-6965 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed and A. P. Knights, Silicon Photonics (Wiley, 2008).
  2. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  3. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
    [Crossref]
  4. E. R. H. Fuchs, R. E. Kirchain, and S. Liu, “The future of silicon photonics: not so fast? insights from 100G ethernet LAN transceivers,” J. Lightwave Technol. 29(15), 2319–2326 (2011).
    [Crossref]
  5. M. Asghari, “Silicon photonics: a low cost integration platform for datacom and telecom applications,” Proc. OFC/NFOEC’2008, paper NThA4 (2008).
    [Crossref]
  6. H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
    [Crossref]
  7. L. Yang, R. Ji, L. Zhang, J. Ding, and Q. Xu, “On-chip CMOS-compatible optical signal processor,” Opt. Express 20(12), 13560–13565 (2012).
    [Crossref] [PubMed]
  8. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref] [PubMed]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  10. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
    [Crossref] [PubMed]
  11. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [Crossref] [PubMed]
  12. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
    [Crossref] [PubMed]
  13. X. Tu, T. Y. Liow, J. Song, M. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
    [Crossref] [PubMed]
  14. F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express 19(12), 11804–11814 (2011).
    [Crossref] [PubMed]
  15. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
    [Crossref]
  16. L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22(2), 2141–2149 (2014).
    [Crossref] [PubMed]
  17. G. Reed, S. Mailis, M. J. Wale, and A. Willner, “Introduction to the issue on optical modulators technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3–5 (2013).
    [Crossref]
  18. L. Yang and J. F. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” J. Lightwave Technol. 32(5), 966–970 (2014).
    [Crossref]
  19. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [Crossref] [PubMed]
  20. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
    [Crossref] [PubMed]
  21. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [Crossref] [PubMed]
  22. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
    [Crossref]
  23. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
    [Crossref]
  24. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [Crossref] [PubMed]
  25. R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
    [Crossref] [PubMed]
  26. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  27. H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
    [Crossref] [PubMed]
  28. Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photonics Technol. Lett. 25(1), 18–21 (2013).
    [Crossref]
  29. L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
    [Crossref] [PubMed]
  30. C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
    [Crossref] [PubMed]
  31. L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, W. Zhu, Y. Liu, L. Jia, Q. Fang, and M. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011).
    [Crossref] [PubMed]
  32. L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
    [Crossref] [PubMed]
  33. X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
    [Crossref] [PubMed]
  34. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
    [Crossref] [PubMed]
  35. A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35(23), 3955–3957 (2010).
    [Crossref] [PubMed]
  36. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
    [Crossref]
  37. J. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
    [Crossref]
  38. S. Lin, Y. Ishikawa, and K. Wada, “Demonstration of optical computing logics based on binary decision diagram,” Opt. Express 20(2), 1378–1384 (2012).
    [Crossref] [PubMed]
  39. J. K. Rakshit, J. N. Roy, and T. Chattopadhyay, “Design of micro-ring resonator based all optical parity generator and checker circuit,” Opt. Commun. 303, 30n.l (2013).
    [Crossref]
  40. P. Sethi and S. Roy, “All-optical ultrafast switching in 2×2 silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates,” J. Lightwave Technol. 32(12), 2173–2180 (2014).
    [Crossref]
  41. F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” Opt. Express 19(21), 20364–20371 (2011).
    [Crossref] [PubMed]
  42. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007).
    [Crossref] [PubMed]
  43. J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Micro resonators: Theory, Fabrication, and Applications (Springer, 2008).
  44. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref] [PubMed]
  45. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref] [PubMed]
  46. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  47. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo optical tuning of SOI resonator switch,” IEEE Photonics Technol. Lett. 18(2), 364–366 (2006).
    [Crossref]
  48. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010).
    [Crossref] [PubMed]
  49. L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett. 32(7), 781–783 (2007).
    [Crossref] [PubMed]
  50. R. A. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  51. K. M. Kramer and W. N. Hitchon, Semiconductor Devices a Simulation Approach (Prentice Hall PTR, 1997).
  52. S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys. 68(10), 4964–4970 (1990).
    [Crossref]

2014 (3)

2013 (2)

G. Reed, S. Mailis, M. J. Wale, and A. Willner, “Introduction to the issue on optical modulators technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3–5 (2013).
[Crossref]

Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photonics Technol. Lett. 25(1), 18–21 (2013).
[Crossref]

2012 (6)

2011 (6)

2010 (7)

L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
[Crossref] [PubMed]

X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
[Crossref] [PubMed]

A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35(23), 3955–3957 (2010).
[Crossref] [PubMed]

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
[Crossref] [PubMed]

J. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
[Crossref] [PubMed]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

2007 (7)

2006 (3)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo optical tuning of SOI resonator switch,” IEEE Photonics Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
[Crossref] [PubMed]

2005 (3)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

2004 (3)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

1990 (1)

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys. 68(10), 4964–4970 (1990).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Alic, N.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Asghari, M.

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo optical tuning of SOI resonator switch,” IEEE Photonics Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

Baets, R.

Bakhtiari, Z.

Bartolozzi, I.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bergman, K.

Biberman, A.

Bienstman, P.

Bogoni, A.

Boyraz, O.

Cardenas, J.

Chen, H.

Chen, J.

Chen, L.

Chen, L. R.

J. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

Chen, P.

Chen, Y. K.

Christen, L.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Citrin, D. S.

Cohen, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Costa, J.

Cunningham, J. E.

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo optical tuning of SOI resonator switch,” IEEE Photonics Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

De Vos, K.

Densmore, A.

Ding, J.

Ding, J. F.

Dong, P.

Eggleton, B. J.

Emerson, N. G.

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Fang, Q.

Fedeli, J.-M.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Feng, D.

Feng, N.-N.

Foster, M. A.

Friedman, L.

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys. 68(10), 4964–4970 (1990).
[Crossref]

Fuchs, E. R. H.

Fukuda, H.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Gaeta, A. L.

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express 19(12), 11804–11814 (2011).
[Crossref] [PubMed]

Geng, M.

Giguere, S. R.

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys. 68(10), 4964–4970 (1990).
[Crossref]

Green, W. M. J.

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Hardy, J.

Hiraki, T.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Hu, Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Husko, C.

Ishikawa, Y.

S. Lin, Y. Ishikawa, and K. Wada, “Demonstration of optical computing logics based on binary decision diagram,” Opt. Express 20(2), 1378–1384 (2012).
[Crossref] [PubMed]

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Jalali, B.

Janz, S.

Ji, R.

Jia, L.

Jiang, Z.

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Khurgin, J. B.

Kirchain, R. E.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo optical tuning of SOI resonator switch,” IEEE Photonics Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

Kou, R.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Krishnamoorthy, A. V.

Kung, C. C.

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Kuo, Y.-H.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Lee, B. G.

Lee, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Li, F.

Li, G.

Liang, H.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Liao, S.

Lin, S.

Liow, T. Y.

Lipson, M.

Lira, H. L.

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Liu, S.

Liu, Y.

Lo, G. Q.

Lorenzo, J. P.

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys. 68(10), 4964–4970 (1990).
[Crossref]

Lu, Y.

Luo, T.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Luo, Y.

Ma, R.

Mailis, S.

G. Reed, S. Mailis, M. J. Wale, and A. Willner, “Introduction to the issue on optical modulators technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3–5 (2013).
[Crossref]

Manipatruni, S.

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Mekis, A.

Min, R.

Morton, P.

Moss, D. J.

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Nishi, H.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Nuccio, S.

Pan, Z.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Paniccia, M.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Pelusi, M.

Pinguet, T.

Poitras, C. B.

Poon, A. W.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Qian, W.

Qiu, C.

Qiu, J.

J. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

Raday, O.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Radic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Raj, K.

Reed, G.

G. Reed, S. Mailis, M. J. Wale, and A. Willner, “Introduction to the issue on optical modulators technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3–5 (2013).
[Crossref]

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express 19(12), 11804–11814 (2011).
[Crossref] [PubMed]

Rochette, M.

J. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

Rong, H.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Rooks, M. J.

Roy, S.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Schacht, E.

Schmidt, B.

Sekaric, L.

Sethi, P.

Shafiiha, R.

Shakya, J.

Shamir, J.

Sherwood-Droz, N.

Shubin, I.

Sih, V.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Song, J.

Soref, R.

Soref, R. A.

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys. 68(10), 4964–4970 (1990).
[Crossref]

R. A. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Sun, K.

J. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

Takeda, K.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Thacker, H.

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express 19(12), 11804–11814 (2011).
[Crossref] [PubMed]

Tian, Y.

Tsuchizawa, T.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Tu, X.

Vlasov, Y. A.

Vo, T. D.

Wada, K.

S. Lin, Y. Ishikawa, and K. Wada, “Demonstration of optical computing logics based on binary decision diagram,” Opt. Express 20(2), 1378–1384 (2012).
[Crossref] [PubMed]

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Wale, M. J.

G. Reed, S. Mailis, M. J. Wale, and A. Willner, “Introduction to the issue on optical modulators technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3–5 (2013).
[Crossref]

Wang, H.

Wang, T.

Wang, Y.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Willner, A.

G. Reed, S. Mailis, M. J. Wale, and A. Willner, “Introduction to the issue on optical modulators technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3–5 (2013).
[Crossref]

Willner, A. E.

Willner, A. W.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Wu, X.

Xu, D.-X.

Xu, Q.

Xu, S.

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

Yamada, K.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Yamamoto, T.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Yan, L.-S.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Yang, L.

L. Yang and J. F. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” J. Lightwave Technol. 32(5), 966–970 (2014).
[Crossref]

Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photonics Technol. Lett. 25(1), 18–21 (2013).
[Crossref]

C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
[Crossref] [PubMed]

L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
[Crossref] [PubMed]

L. Yang, R. Ji, L. Zhang, J. Ding, and Q. Xu, “On-chip CMOS-compatible optical signal processor,” Opt. Express 20(12), 13560–13565 (2012).
[Crossref] [PubMed]

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
[Crossref] [PubMed]

L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, W. Zhu, Y. Liu, L. Jia, Q. Fang, and M. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011).
[Crossref] [PubMed]

L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
[Crossref] [PubMed]

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
[Crossref] [PubMed]

Yao, J.

Ye, X.

Yi, H.

Yu, C.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

Yu, M.

Zhang, B.

Zhang, H.

Zhang, L.

Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photonics Technol. Lett. 25(1), 18–21 (2013).
[Crossref]

L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
[Crossref] [PubMed]

L. Yang, R. Ji, L. Zhang, J. Ding, and Q. Xu, “On-chip CMOS-compatible optical signal processor,” Opt. Express 20(12), 13560–13565 (2012).
[Crossref] [PubMed]

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
[Crossref] [PubMed]

L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, W. Zhu, Y. Liu, L. Jia, Q. Fang, and M. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011).
[Crossref] [PubMed]

L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
[Crossref] [PubMed]

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
[Crossref] [PubMed]

Zheng, D.

Zheng, X.

Zhou, L.

Zhou, P.

Zhou, Z.

Zhu, H.

Zhu, W.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

G. Reed, S. Mailis, M. J. Wale, and A. Willner, “Introduction to the issue on optical modulators technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3–5 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (5)

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photonics Technol. Lett. 25(1), 18–21 (2013).
[Crossref]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photonics Technol. Lett. 17(6), 1232–1234 (2005).
[Crossref]

J. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermo optical tuning of SOI resonator switch,” IEEE Photonics Technol. Lett. 18(2), 364–366 (2006).
[Crossref]

J. Appl. Phys. (1)

S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys. 68(10), 4964–4970 (1990).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (2)

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[Crossref]

H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008).
[Crossref]

Nat. Phys. (1)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[Crossref]

Nature (4)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Opt. Express (23)

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
[Crossref] [PubMed]

L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
[Crossref] [PubMed]

J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007).
[Crossref] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref] [PubMed]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010).
[Crossref] [PubMed]

L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, W. Zhu, Y. Liu, L. Jia, Q. Fang, and M. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011).
[Crossref] [PubMed]

F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express 19(12), 11804–11814 (2011).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[Crossref] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009).
[Crossref] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[Crossref] [PubMed]

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
[Crossref] [PubMed]

X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010).
[Crossref] [PubMed]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
[Crossref] [PubMed]

L. Zhou, H. Zhu, H. Zhang, and J. Chen, “Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators,” Opt. Express 22(2), 2141–2149 (2014).
[Crossref] [PubMed]

X. Tu, T. Y. Liow, J. Song, M. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
[Crossref] [PubMed]

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port optical router for photonic networks-on-chip,” Opt. Express 19(21), 20258–20268 (2011).
[Crossref] [PubMed]

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” Opt. Express 19(21), 20364–20371 (2011).
[Crossref] [PubMed]

S. Lin, Y. Ishikawa, and K. Wada, “Demonstration of optical computing logics based on binary decision diagram,” Opt. Express 20(2), 1378–1384 (2012).
[Crossref] [PubMed]

L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
[Crossref] [PubMed]

L. Yang, R. Ji, L. Zhang, J. Ding, and Q. Xu, “On-chip CMOS-compatible optical signal processor,” Opt. Express 20(12), 13560–13565 (2012).
[Crossref] [PubMed]

L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (6)

K. M. Kramer and W. N. Hitchon, Semiconductor Devices a Simulation Approach (Prentice Hall PTR, 1997).

J. K. Rakshit, J. N. Roy, and T. Chattopadhyay, “Design of micro-ring resonator based all optical parity generator and checker circuit,” Opt. Commun. 303, 30n.l (2013).
[Crossref]

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Micro resonators: Theory, Fabrication, and Applications (Springer, 2008).

G. T. Reed and A. P. Knights, Silicon Photonics (Wiley, 2008).

M. Asghari, “Silicon photonics: a low cost integration platform for datacom and telecom applications,” Proc. OFC/NFOEC’2008, paper NThA4 (2008).
[Crossref]

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, and K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic and (b) Micrograph of the directed XOR logic circuit (CW: continuous wave, MRR: micro-ring resonator, EPS: electrical pulse sequences). Z1~Z4: coupling regions, L1~L2: straight waveguides, θL1 and θL2 are the phase shifts of L1 and L2.
Fig. 2
Fig. 2 Response spectra of the device at the Output port (a-d) obtained in simulation under different four operation status (‘00’, ‘01’, ‘10’ and ‘11’).
Fig. 3
Fig. 3 (a) Variation of refractive index at λ = 1.55μm being a function of distances between doped region and sidewall of the ring waveguide when the applied voltage to the PIN diodes around 1V. (b) Absorption at λ = 1.55μm being a function of distances between doped region and sidewall of the ring waveguide when the applied voltage to the PIN diodes around 1V.
Fig. 4
Fig. 4 (a) 2-D simulated energy band diagram at 0 V. (b) 2-D simulated energy band diagram at 1 V. (c) 2-D simulated carriers concentration distributions in the PIN diode at1V. (d) Measured IV curves of PIN diodes
Fig. 5
Fig. 5 Experiment schematic for the device’s static response. ASE: amplified spontaneous emission source. TVS: tunable voltage source. DUT: device under test. OSA: optical spectral analyzer.
Fig. 6
Fig. 6 Response spectra of the device at the Output port (a-d) with the applied voltages to the PIN diodes around MRR1 and MRR2 being (a) 0 and 0 V, (b) 0 and 1 V, (c) 1 and 0 V, and (d) 1 and 1 V.
Fig. 7
Fig. 7 Experiment schematic for the device’s dynamic response. TL: tunable laser. PC: polarization controller. DUT: device under test. AFG: arbitrary function generator. EDFA: erbium doped fiber amplifier. PD: photo-detector. OSC: oscilloscope.
Fig. 8
Fig. 8 Signals applied to (a) MRR1, (b) MRR2, (c) XOR operation result.

Tables (3)

Tables Icon

Table 1 The truth table achieved by the proposed circuit

Tables Icon

Table 2 Parameters adopted in the numerical simulation

Tables Icon

Table 3 Physical model adopted in the numerical simulation

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( E d 1 E n 2 ) = ( t j k j k t ) ( E in E n 1 )
E d 1 = t ( 1 α exp ( j θ 1 ) ) 1 α t 2 exp ( j θ 1 ) × E in
E m 1 = -k 2 α 1 2 exp ( j θ 1 2 ) 1 α t 2 exp ( j θ 1 ) × E in
θ = β 2 π R = 4 π 2 n e f f R λ
E O u t p u t = E d 3 = t ( 1 α exp ( j θ 1 ) ) 1 α t 2 exp ( j θ 1 ) × -k 2 α 1 2 exp ( j θ 2 2 ) 1 α t 2 exp ( j θ 2 ) × exp ( j θ L 1 ) × E in + -k 2 α 1 2 exp ( j θ 1 2 ) 1 α t 2 exp ( j θ 1 ) × t ( 1 α exp ( j θ 2 ) ) 1 α t 2 exp ( j θ 2 ) × exp ( j θ L 2 ) × E in
Δ n = e 2 λ 2 8 π 2 c 2 ε 0 n ( Δ N e m e + Δ N h m h )
Δ α = e 3 λ 2 4 π 2 c 3 ε 0 n ( Δ N e m e 2 μ e + Δ N h m h 2 μ h )
( ε V ) q ( p n + C ) = 0
q p t + J p = q R
q n t J n = q R
Δ n e f f = 1 n e f f ( 0 ) Δ n ( x , y ) n 0 ( x , y ) | E 0 ( x , y ) | 2 d x d y | E 0 ( x , y ) | 2 d x d y

Metrics