Abstract

A 3-dimensional fiber probe based on orthogonal micro focal-length collimation (MFL-collimation) is proposed for the measurement of micro parts with high aspect ratios. The probe consists of a fiber stylus which acts as a micro focal-length cylindrical lens (MFLC-lens) of the two orthogonal MFL-collimation optical paths and a probe tip fixed on the free end of the fiber stylus for touching the workpiece. The fiber stylus will deflect (deflection mode) or buckle (buckling mode) under contacts, and the deflection or buckling of the fiber stylus will cause corresponding shifts of the fringe images of the two orthogonal MFL-collimation optical paths. Therefore, the 3-dimensional displacements of the probe tip are transformed into the centroid position shifts of the zero-order fringe images. Experimental results indicate that the fiber probe has a measuring capability in 3-dimensional tactility, and a radial and axial resolution of 5 nm and 3 nm can be obtained respectively. The probe is easily applied in the measurement of micro parts because of its high resolution, low cost, high measurable aspect ratio, low probing forces and capability in three-dimensional tactility.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional fiber probe based on micro focal-length collimation and a fiber Bragg grating for the measurement of micro parts

Jiwen Cui, Junying Li, Kunpeng Feng, and Jiubin Tan
Opt. Lett. 40(14) 3348-3351 (2015)

Double fiber probe with a single fiber Bragg grating based on the capillary-driven self-assembly fabrication method for dimensional measurement of micro parts

Jiwen Cui, Kunpeng Feng, Yang Hu, Junying Li, Hong Dang, and Jiubin Tan
Opt. Express 23(26) 32926-32940 (2015)

Fiber deflection probing method based on micro focal-length collimation

Jiubin Tan, Fei Wang, and Jiwen Cui
Opt. Express 18(3) 2925-2933 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
    [Crossref]
  2. A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing systems in dimensional metrology,” Ann. CIRP 53(2), 657–684 (2004).
    [Crossref]
  3. H. Schwenke, F. Wäldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann. CIRP 50(1), 361–364 (2001).
    [Crossref]
  4. C.-C. Kao and A. J. Shih, “Form measurements of micro-holes,” Meas. Sci. Technol. 18(11), 3603–3611 (2007).
    [Crossref]
  5. M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
    [Crossref]
  6. J. Cui, L. Li, and J. Tan, “Optical fiber probe based on spherical coupling of light energy for inner-dimension measurement of microstructures with high aspect ratios,” Opt. Lett. 36(23), 4689–4691 (2011).
    [Crossref] [PubMed]
  7. J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
    [Crossref]
  8. F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, “Fiber-based white-light interferometer with improved sensor tip and stepped mirror,” IEEE Trans. Instrum. Meas. 56(6), 2279–2283 (2007).
    [Crossref]
  9. T. Pfeifer, R. Schmitt, N. Konig, and G. F. Mallmann, “Interferometric measurement of injection nozzles using ultra-small fiber-optical probes,” Chin. Opt. Lett. 9(7), 071202 (2011).
    [Crossref]
  10. B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” in Proc. of the ASPE Annual Meeting (ASPE, 2004), pp. 24–27.
  11. J. A. Stone, B. Muralikrishnan, and J. R. Stoup, “A fiber probe for CMM measurements of small features,” Proc. SPIE 5879, 58790R (2005).
    [Crossref]
  12. J. Tan, F. Wang, and J. Cui, “Fiber deflection probing method based on micro focal-length collimation,” Opt. Express 18(3), 2925–2933 (2010).
    [Crossref] [PubMed]
  13. A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
    [Crossref]
  14. J. Cui, K. Feng, J. Li, and J. Tan, “Development of a double fiber probe with a single fiber Bragg grating for dimensional measurement of microholes with high aspect ratios,” Opt. Lett. 39(10), 2868–2871 (2014).
    [Crossref] [PubMed]

2014 (2)

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
[Crossref]

J. Cui, K. Feng, J. Li, and J. Tan, “Development of a double fiber probe with a single fiber Bragg grating for dimensional measurement of microholes with high aspect ratios,” Opt. Lett. 39(10), 2868–2871 (2014).
[Crossref] [PubMed]

2012 (1)

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

2011 (2)

2010 (1)

2007 (3)

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, “Fiber-based white-light interferometer with improved sensor tip and stepped mirror,” IEEE Trans. Instrum. Meas. 56(6), 2279–2283 (2007).
[Crossref]

C.-C. Kao and A. J. Shih, “Form measurements of micro-holes,” Meas. Sci. Technol. 18(11), 3603–3611 (2007).
[Crossref]

2005 (1)

J. A. Stone, B. Muralikrishnan, and J. R. Stoup, “A fiber probe for CMM measurements of small features,” Proc. SPIE 5879, 58790R (2005).
[Crossref]

2004 (1)

A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing systems in dimensional metrology,” Ann. CIRP 53(2), 657–684 (2004).
[Crossref]

2002 (1)

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

2001 (1)

H. Schwenke, F. Wäldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann. CIRP 50(1), 361–364 (2001).
[Crossref]

Andraes, M.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Chen, Y.

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
[Crossref]

Christoph, R.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Cui, J.

Depiereux, F.

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, “Fiber-based white-light interferometer with improved sensor tip and stepped mirror,” IEEE Trans. Instrum. Meas. 56(6), 2279–2283 (2007).
[Crossref]

Estler, T.

A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing systems in dimensional metrology,” Ann. CIRP 53(2), 657–684 (2004).
[Crossref]

Feng, K.

Hopp, B.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Kao, C.-C.

C.-C. Kao and A. J. Shih, “Form measurements of micro-holes,” Meas. Sci. Technol. 18(11), 3603–3611 (2007).
[Crossref]

Konig, N.

T. Pfeifer, R. Schmitt, N. Konig, and G. F. Mallmann, “Interferometric measurement of injection nozzles using ultra-small fiber-optical probes,” Chin. Opt. Lett. 9(7), 071202 (2011).
[Crossref]

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, “Fiber-based white-light interferometer with improved sensor tip and stepped mirror,” IEEE Trans. Instrum. Meas. 56(6), 2279–2283 (2007).
[Crossref]

Küng, A.

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

Kunzmann, H.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

H. Schwenke, F. Wäldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann. CIRP 50(1), 361–364 (2001).
[Crossref]

Li, J.

Li, L.

Mallmann, G. F.

McMurtry, D.

A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing systems in dimensional metrology,” Ann. CIRP 53(2), 657–684 (2004).
[Crossref]

Meli, F.

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

Muralikrishnan, B.

J. A. Stone, B. Muralikrishnan, and J. R. Stoup, “A fiber probe for CMM measurements of small features,” Proc. SPIE 5879, 58790R (2005).
[Crossref]

B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” in Proc. of the ASPE Annual Meeting (ASPE, 2004), pp. 24–27.

Neuschaefer-Rube, U.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

Peggs, G.

A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing systems in dimensional metrology,” Ann. CIRP 53(2), 657–684 (2004).
[Crossref]

Petz, M.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Pfeifer, T.

T. Pfeifer, R. Schmitt, N. Konig, and G. F. Mallmann, “Interferometric measurement of injection nozzles using ultra-small fiber-optical probes,” Chin. Opt. Lett. 9(7), 071202 (2011).
[Crossref]

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, “Fiber-based white-light interferometer with improved sensor tip and stepped mirror,” IEEE Trans. Instrum. Meas. 56(6), 2279–2283 (2007).
[Crossref]

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

Potluri, A.

B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” in Proc. of the ASPE Annual Meeting (ASPE, 2004), pp. 24–27.

Sahay, C.

B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” in Proc. of the ASPE Annual Meeting (ASPE, 2004), pp. 24–27.

Schmitt, R.

T. Pfeifer, R. Schmitt, N. Konig, and G. F. Mallmann, “Interferometric measurement of injection nozzles using ultra-small fiber-optical probes,” Chin. Opt. Lett. 9(7), 071202 (2011).
[Crossref]

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, “Fiber-based white-light interferometer with improved sensor tip and stepped mirror,” IEEE Trans. Instrum. Meas. 56(6), 2279–2283 (2007).
[Crossref]

Schwenke, H.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

H. Schwenke, F. Wäldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann. CIRP 50(1), 361–364 (2001).
[Crossref]

Shih, A. J.

C.-C. Kao and A. J. Shih, “Form measurements of micro-holes,” Meas. Sci. Technol. 18(11), 3603–3611 (2007).
[Crossref]

Stone, J.

B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” in Proc. of the ASPE Annual Meeting (ASPE, 2004), pp. 24–27.

Stone, J. A.

J. A. Stone, B. Muralikrishnan, and J. R. Stoup, “A fiber probe for CMM measurements of small features,” Proc. SPIE 5879, 58790R (2005).
[Crossref]

Stoup, J.

B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” in Proc. of the ASPE Annual Meeting (ASPE, 2004), pp. 24–27.

Stoup, J. R.

J. A. Stone, B. Muralikrishnan, and J. R. Stoup, “A fiber probe for CMM measurements of small features,” Proc. SPIE 5879, 58790R (2005).
[Crossref]

Tan, J.

Thalmann, R.

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

Tutsch, R.

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Vemuri, S.

B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” in Proc. of the ASPE Annual Meeting (ASPE, 2004), pp. 24–27.

Wäldele, F.

H. Schwenke, F. Wäldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann. CIRP 50(1), 361–364 (2001).
[Crossref]

Wang, F.

Weckenmann, A.

A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing systems in dimensional metrology,” Ann. CIRP 53(2), 657–684 (2004).
[Crossref]

Weiskirch, C.

H. Schwenke, F. Wäldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann. CIRP 50(1), 361–364 (2001).
[Crossref]

Ann. CIRP (3)

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, “Optical methods for dimensional metrology in production engineering,” Ann. CIRP 51(2), 685–699 (2002).
[Crossref]

A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing systems in dimensional metrology,” Ann. CIRP 53(2), 657–684 (2004).
[Crossref]

H. Schwenke, F. Wäldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” Ann. CIRP 50(1), 361–364 (2001).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Trans. Instrum. Meas. (1)

F. Depiereux, N. Konig, T. Pfeifer, and R. Schmitt, “Fiber-based white-light interferometer with improved sensor tip and stepped mirror,” IEEE Trans. Instrum. Meas. 56(6), 2279–2283 (2007).
[Crossref]

Meas. Sci. Technol. (3)

J. Cui, Y. Chen, and J. Tan, “Improvement of dimensional measurement accuracy of microstructures with high aspect ratio with a spherical coupling fiber probe,” Meas. Sci. Technol. 25(7), 075902 (2014).
[Crossref]

C.-C. Kao and A. J. Shih, “Form measurements of micro-holes,” Meas. Sci. Technol. 18(11), 3603–3611 (2007).
[Crossref]

A. Küng, F. Meli, and R. Thalmann, “Ultraprecision micro-CMM using a low force 3D touch probe,” Meas. Sci. Technol. 18(2), 319–327 (2007).
[Crossref]

Measurement (1)

M. Petz, R. Tutsch, R. Christoph, M. Andraes, and B. Hopp, “Tactile–optical probes for three-dimensional microparts,” Measurement 45(10), 2288–2298 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

J. A. Stone, B. Muralikrishnan, and J. R. Stoup, “A fiber probe for CMM measurements of small features,” Proc. SPIE 5879, 58790R (2005).
[Crossref]

Other (1)

B. Muralikrishnan, J. Stone, S. Vemuri, C. Sahay, A. Potluri, and J. Stoup, “Fiber deflection probe for small hole measurements,” in Proc. of the ASPE Annual Meeting (ASPE, 2004), pp. 24–27.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Schematic diagram of the 3-dimensional fiber probe based on MFL-collimation.
Fig. 2
Fig. 2 Light transmission of the MFL-collimation optical path.
Fig. 3
Fig. 3 Normalized intensity of the fringe image of the MFL-collimation optical path (a) situation of transversal defocus displacement along y direction (b) situation of longitudinal defocus displacement along the positive direction of x-axis (c) situation of longitudinal defocus displacement along the negative direction of x-axis.
Fig. 4
Fig. 4 Fringe image of the MFL-collimation optical path.
Fig. 5
Fig. 5 Fringe image captured by the linear CCD camera.
Fig. 6
Fig. 6 Response curve of the centroid position to the two-dimensional defocus of the MFLC-lens along x and y direction (a) transversal response curves with different longitudinal defocus displacement (b) longitudinal response curves with different transversal defocus displacement.
Fig. 7
Fig. 7 (a) Deflection mode of the fiber probe (b) simplification of the deflection mode.
Fig. 8
Fig. 8 (a) Buckling mode of the fiber probe, (b) simplification of the buckling mode.
Fig. 9
Fig. 9 Elastic buckling mode of the slender rod with two fixed ends.
Fig. 10
Fig. 10 Structure diagram and photo of the fiber probe.
Fig. 11
Fig. 11 Experimental setup of the 3D fiber probe.
Fig. 12
Fig. 12 Response curves of the fiber probe to the radial displacements (a) along X direction and (b) along Y direction.
Fig. 13
Fig. 13 Radial resolutions of fiber probe (a) along X direction and (b) along Y direction.
Fig. 14
Fig. 14 Response curves of the fiber probe to the axial displacement along Z direction: Output of CCDY (top) and output of CCDX (bottom).
Fig. 15
Fig. 15 Axial resolution of the fiber probe along Z direction: Output of CCDY (left) and output of CCDX (right).
Fig. 16
Fig. 16 (a) Measurement of three micro-holes on a ceramic circular disc (b) Measurement results of three micro-holes.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

β 1 =arcsin( ( f+Δx Δy / tanθ )sinθ /r )
β 2 =arcsin( sin β 1 /n )
{ x 1 =rcos α 1 +f+Δx y 1 =rsin α 1 +Δy
{ x 2 =rcos α 2 +f+Δx y 2 =rsin α 2 +Δy
{ x 3 =L+f y 3 =rsin α 2 ( Lrcos α 2 )tanγ+Δy
P c = β c Δy
Δ x o = F r L P 3 6EI ( 23 L o,x L P + ( L o,x L P ) 3 )
Δ x o = β d,x Δ x t
[ P c,x P c,y ]=[ β d,x β c 0 0 β d,y β c ][ Δ x t Δ y t ]
d 2 w d v 2 + F a EI w=0
w(v)=ε[ 1cos( 2πv /l ) ]
s= 0 l 1+ ( dw / dv ) 2 l+ 4 π 2 ε 2 / ( 2l )
ε=( 1/π ) l( sl )
ε={ 0 ( 1/π ) l( s 0 Δ l cr l ) for s 0 Δ l cr l<0 for s 0 Δ l cr l>0
Δ r o ={ 0 ( 1/π )[ 1cos( 2π( 1 L o / L P ) ) ] L P ( Δ z t Δ z cr ) forΔ z t <Δ z cr forΔ z t >Δ z cr
P c ={ 0 β c ( 1/π )[ 1cos( 2π( 1 L o / L P ) ) ] L P ( Δ z t Δ z cr ) forΔ z t <Δ z cr forΔ z t >Δ z cr

Metrics