Abstract

Organic Photo Sensor (OPS) technology allows printing on conformable plastic-like substrates complex-shaped, arbitrarily-sized and pre-aligned photosensitive elements. This article reports, to the best of our knowledge, the first investigation to implement this emerging technology for Multi-Angle Light Scattering (MALS) characterization of nano- and microparticle suspensions. Monte Carlo and Lorenz-Mie theory calculations as well as preliminary experimental results on latex suspensions clearly demonstrate the potential of the proposed approach.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of the volume scattering function of aqueous particle suspensions with a laboratory multi-angle light scattering instrument

Marcel Babin, Dariusz Stramski, Rick A. Reynolds, Vanessa M. Wright, and Edouard Leymarie
Appl. Opt. 51(17) 3853-3873 (2012)

Effect of scattering angle error on particle size determination by multiangle dynamic light scattering

Shanshan Gao, Jin Shen, John C. Thomas, Zuoming Yin, Xuemin Wang, Yajing Wang, Wei Liu, and Xianming Sun
Appl. Opt. 54(10) 2824-2831 (2015)

Measurement of the light scattering of single micrometer-sized particles captured with a microfluidic trap

Jie Dai, Wei Li, Baoyu Gong, Huimin Wang, Min Xia, and Kecheng Yang
Opt. Express 23(23) 30204-30215 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic Publishers, 2001).
  2. K. Knobelspiesse, B. Cairns, M. Mishchenko, J. Chowdhary, K. Tsigaridis, B. van Diedenhoven, W. Martin, M. Ottaviani, and M. Alexandrov, “Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs,” Opt. Express 20(19), 21457–21484 (2012).
    [Crossref] [PubMed]
  3. F. R. A. Onofri, M. Wozniak, and S. Barbosa, “On the optical characterisation of nanoparticles and their aggregates in plasma systems,” Contrib. Plasma Phys. 51(2–3), 228–236 (2011).
    [Crossref]
  4. C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, and N. Scholz, “Control of particulate processes by optical measurement techniques,” Part. Part. Syst. Charact. 15(5), 211–218 (1998).
    [Crossref]
  5. M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010).
    [Crossref] [PubMed]
  6. N. Roth, K. Anders, and A. Frohn, “Refractive-index measurements for the correction of particle sizing methods,” Appl. Opt. 30(33), 4960–4965 (1991).
    [Crossref] [PubMed]
  7. S. Gao, J. Shen, J. C. Thomas, Z. Yin, X. Wang, Y. Wang, W. Liu, and X. Sun, “Effect of scattering angle error on particle size determination by multiangle dynamic light scattering,” Appl. Opt. 54(10), 2824–2831 (2015).
    [Crossref] [PubMed]
  8. P. J. Wyatt, K. L. Schehrer, S. D. Phillips, C. Jackson, Y.-J. Chang, R. G. Parker, D. T. Phillips, and J. R. Bottiger, “Aerosol particle analyzer,” Appl. Opt. 27(2), 217–221 (1988).
    [Crossref] [PubMed]
  9. H. Oltmann, J. Reimann, and S. Will, “Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS),” Appl. Phys. B 106(1), 171–183 (2012).
    [Crossref]
  10. P. N. Pusey, “Suppression of multiple scattering by photon cross-correlation techniques,” Curr. Opin. Colloid Interface Sci. 4(3), 177–185 (1999).
    [Crossref]
  11. I. D. Block and F. Scheffold, “Modulated 3D cross-correlation light scattering: improving turbid sample characterization,” Rev. Sci. Instrum. 81(12), 123107 (2010).
    [Crossref] [PubMed]
  12. ISORG, “Organic photodetectors and large area photosensors,” (September, 2015), http://www.isorg.fr .
  13. J. M. Verilhac, “Recent developments of solution-processed organic photodetectors,” Eur. Phys. J. Appl. Phys. 63(1), 14405 (2013).
    [Crossref]
  14. G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
    [Crossref] [PubMed]
  15. M. Young, “Pinhole optics,” Appl. Opt. 10(12), 2763–2767 (1971).
    [Crossref] [PubMed]
  16. P. Martinez-Vara, J. Silva Barranco, S. I. De Los Santos G, J. Munoz-Lopez, M. A. Torres-Rodriguez, R. Suarez Xique, and G. Martinez-Niconoff, “Diffraction by three-dimensional slit-shape curves: decomposition in terms of Airy and Pearcey functions,” Opt. Lett. 40(15), 3496–3499 (2015).
    [Crossref] [PubMed]
  17. C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A 25(7), 1541–1550 (2008).
    [Crossref] [PubMed]
  18. O. Glatter, “Static light scattering of large systems,” in Neutron, X-rays and Light. Scattering Methods Applied to Soft Condensed Matter, T. Zemb and P. Lindner, eds. (Elsevier, 2002).
  19. F. R. A. Onofri, S. Barbosa, O. Touré, M. Woźniak, and C. Grisolia, “Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy,” J. Quant. Spectrosc. Rad. Transf. 126, 160–168 (2013).
    [Crossref]
  20. R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
    [Crossref] [PubMed]
  21. D. Lottin, D. Ferry, J. M. Gay, D. Delhaye, and F. X. Ouf, “On methods determining the fractal dimension of combustion aerosols and particleclusters,” J. Aerosol Sci. 58, 41–49 (2013).
    [Crossref]

2015 (2)

2014 (1)

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

2013 (4)

D. Lottin, D. Ferry, J. M. Gay, D. Delhaye, and F. X. Ouf, “On methods determining the fractal dimension of combustion aerosols and particleclusters,” J. Aerosol Sci. 58, 41–49 (2013).
[Crossref]

F. R. A. Onofri, S. Barbosa, O. Touré, M. Woźniak, and C. Grisolia, “Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy,” J. Quant. Spectrosc. Rad. Transf. 126, 160–168 (2013).
[Crossref]

J. M. Verilhac, “Recent developments of solution-processed organic photodetectors,” Eur. Phys. J. Appl. Phys. 63(1), 14405 (2013).
[Crossref]

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

F. R. A. Onofri, M. Wozniak, and S. Barbosa, “On the optical characterisation of nanoparticles and their aggregates in plasma systems,” Contrib. Plasma Phys. 51(2–3), 228–236 (2011).
[Crossref]

2010 (2)

M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010).
[Crossref] [PubMed]

I. D. Block and F. Scheffold, “Modulated 3D cross-correlation light scattering: improving turbid sample characterization,” Rev. Sci. Instrum. 81(12), 123107 (2010).
[Crossref] [PubMed]

2008 (1)

1999 (1)

P. N. Pusey, “Suppression of multiple scattering by photon cross-correlation techniques,” Curr. Opin. Colloid Interface Sci. 4(3), 177–185 (1999).
[Crossref]

1998 (1)

C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, and N. Scholz, “Control of particulate processes by optical measurement techniques,” Part. Part. Syst. Charact. 15(5), 211–218 (1998).
[Crossref]

1991 (1)

1988 (1)

1971 (1)

Alexandrov, M.

Anders, K.

Azzellino, G.

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Barbosa, S.

F. R. A. Onofri, S. Barbosa, O. Touré, M. Woźniak, and C. Grisolia, “Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy,” J. Quant. Spectrosc. Rad. Transf. 126, 160–168 (2013).
[Crossref]

F. R. A. Onofri, M. Wozniak, and S. Barbosa, “On the optical characterisation of nanoparticles and their aggregates in plasma systems,” Contrib. Plasma Phys. 51(2–3), 228–236 (2011).
[Crossref]

Beres, N. D.

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

Binda, M.

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Block, I. D.

I. D. Block and F. Scheffold, “Modulated 3D cross-correlation light scattering: improving turbid sample characterization,” Rev. Sci. Instrum. 81(12), 123107 (2010).
[Crossref] [PubMed]

Bottiger, J. R.

Cairns, B.

Caironi, M.

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Calba, C.

Chakrabarty, R. K.

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

Chang, Y.-J.

China, S.

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

Chowdhary, J.

De Los Santos G, S. I.

Delhaye, D.

D. Lottin, D. Ferry, J. M. Gay, D. Delhaye, and F. X. Ouf, “On methods determining the fractal dimension of combustion aerosols and particleclusters,” J. Aerosol Sci. 58, 41–49 (2013).
[Crossref]

Dubey, M. K.

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

Ferry, D.

D. Lottin, D. Ferry, J. M. Gay, D. Delhaye, and F. X. Ouf, “On methods determining the fractal dimension of combustion aerosols and particleclusters,” J. Aerosol Sci. 58, 41–49 (2013).
[Crossref]

Frohn, A.

Gao, S.

Gay, J. M.

D. Lottin, D. Ferry, J. M. Gay, D. Delhaye, and F. X. Ouf, “On methods determining the fractal dimension of combustion aerosols and particleclusters,” J. Aerosol Sci. 58, 41–49 (2013).
[Crossref]

Giacomelli, M.

Girasole, T.

Grimoldi, A.

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Grisolia, C.

F. R. A. Onofri, S. Barbosa, O. Touré, M. Woźniak, and C. Grisolia, “Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy,” J. Quant. Spectrosc. Rad. Transf. 126, 160–168 (2013).
[Crossref]

Heffels, C.

C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, and N. Scholz, “Control of particulate processes by optical measurement techniques,” Part. Part. Syst. Charact. 15(5), 211–218 (1998).
[Crossref]

Jackson, C.

Knobelspiesse, K.

Lee, J.

Liu, L.

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

Liu, W.

Lottin, D.

D. Lottin, D. Ferry, J. M. Gay, D. Delhaye, and F. X. Ouf, “On methods determining the fractal dimension of combustion aerosols and particleclusters,” J. Aerosol Sci. 58, 41–49 (2013).
[Crossref]

Martin, W.

Martinez-Niconoff, G.

Martinez-Vara, P.

Mazzoleni, C.

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

Méès, L.

Mishchenko, M.

Mishchenko, M. I.

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

Moosmüller, H.

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

Munoz-Lopez, J.

Natali, D.

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Oltmann, H.

H. Oltmann, J. Reimann, and S. Will, “Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS),” Appl. Phys. B 106(1), 171–183 (2012).
[Crossref]

Onofri, F. R. A.

F. R. A. Onofri, S. Barbosa, O. Touré, M. Woźniak, and C. Grisolia, “Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy,” J. Quant. Spectrosc. Rad. Transf. 126, 160–168 (2013).
[Crossref]

F. R. A. Onofri, M. Wozniak, and S. Barbosa, “On the optical characterisation of nanoparticles and their aggregates in plasma systems,” Contrib. Plasma Phys. 51(2–3), 228–236 (2011).
[Crossref]

Ottaviani, M.

Ouf, F. X.

D. Lottin, D. Ferry, J. M. Gay, D. Delhaye, and F. X. Ouf, “On methods determining the fractal dimension of combustion aerosols and particleclusters,” J. Aerosol Sci. 58, 41–49 (2013).
[Crossref]

Parker, R. G.

Phillips, D. T.

Phillips, S. D.

Polke, R.

C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, and N. Scholz, “Control of particulate processes by optical measurement techniques,” Part. Part. Syst. Charact. 15(5), 211–218 (1998).
[Crossref]

Pusey, P. N.

P. N. Pusey, “Suppression of multiple scattering by photon cross-correlation techniques,” Curr. Opin. Colloid Interface Sci. 4(3), 177–185 (1999).
[Crossref]

Rädle, M.

C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, and N. Scholz, “Control of particulate processes by optical measurement techniques,” Part. Part. Syst. Charact. 15(5), 211–218 (1998).
[Crossref]

Reimann, J.

H. Oltmann, J. Reimann, and S. Will, “Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS),” Appl. Phys. B 106(1), 171–183 (2012).
[Crossref]

Roth, N.

Rozé, C.

Sachweh, B.

C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, and N. Scholz, “Control of particulate processes by optical measurement techniques,” Part. Part. Syst. Charact. 15(5), 211–218 (1998).
[Crossref]

Sampietro, M.

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Schäfer, M.

C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, and N. Scholz, “Control of particulate processes by optical measurement techniques,” Part. Part. Syst. Charact. 15(5), 211–218 (1998).
[Crossref]

Scheffold, F.

I. D. Block and F. Scheffold, “Modulated 3D cross-correlation light scattering: improving turbid sample characterization,” Rev. Sci. Instrum. 81(12), 123107 (2010).
[Crossref] [PubMed]

Schehrer, K. L.

Scholz, N.

C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, and N. Scholz, “Control of particulate processes by optical measurement techniques,” Part. Part. Syst. Charact. 15(5), 211–218 (1998).
[Crossref]

Shen, J.

Silva Barranco, J.

Suarez Xique, R.

Sun, X.

Thomas, J. C.

Torres-Rodriguez, M. A.

Touré, O.

F. R. A. Onofri, S. Barbosa, O. Touré, M. Woźniak, and C. Grisolia, “Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy,” J. Quant. Spectrosc. Rad. Transf. 126, 160–168 (2013).
[Crossref]

Tsigaridis, K.

van Diedenhoven, B.

Verilhac, J. M.

J. M. Verilhac, “Recent developments of solution-processed organic photodetectors,” Eur. Phys. J. Appl. Phys. 63(1), 14405 (2013).
[Crossref]

Wang, X.

Wang, Y.

Wax, A.

Will, S.

H. Oltmann, J. Reimann, and S. Will, “Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS),” Appl. Phys. B 106(1), 171–183 (2012).
[Crossref]

Wozniak, M.

F. R. A. Onofri, S. Barbosa, O. Touré, M. Woźniak, and C. Grisolia, “Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy,” J. Quant. Spectrosc. Rad. Transf. 126, 160–168 (2013).
[Crossref]

F. R. A. Onofri, M. Wozniak, and S. Barbosa, “On the optical characterisation of nanoparticles and their aggregates in plasma systems,” Contrib. Plasma Phys. 51(2–3), 228–236 (2011).
[Crossref]

Wyatt, P. J.

Yin, Z.

Young, M.

Zhu, Y.

Adv. Mater. (1)

G. Azzellino, A. Grimoldi, M. Binda, M. Caironi, D. Natali, and M. Sampietro, “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25(47), 6829–6833 (2013).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. B (1)

H. Oltmann, J. Reimann, and S. Will, “Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS),” Appl. Phys. B 106(1), 171–183 (2012).
[Crossref]

Contrib. Plasma Phys. (1)

F. R. A. Onofri, M. Wozniak, and S. Barbosa, “On the optical characterisation of nanoparticles and their aggregates in plasma systems,” Contrib. Plasma Phys. 51(2–3), 228–236 (2011).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

P. N. Pusey, “Suppression of multiple scattering by photon cross-correlation techniques,” Curr. Opin. Colloid Interface Sci. 4(3), 177–185 (1999).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

J. M. Verilhac, “Recent developments of solution-processed organic photodetectors,” Eur. Phys. J. Appl. Phys. 63(1), 14405 (2013).
[Crossref]

J. Aerosol Sci. (1)

D. Lottin, D. Ferry, J. M. Gay, D. Delhaye, and F. X. Ouf, “On methods determining the fractal dimension of combustion aerosols and particleclusters,” J. Aerosol Sci. 58, 41–49 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Rad. Transf. (1)

F. R. A. Onofri, S. Barbosa, O. Touré, M. Woźniak, and C. Grisolia, “Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy,” J. Quant. Spectrosc. Rad. Transf. 126, 160–168 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Part. Part. Syst. Charact. (1)

C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, and N. Scholz, “Control of particulate processes by optical measurement techniques,” Part. Part. Syst. Charact. 15(5), 211–218 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

I. D. Block and F. Scheffold, “Modulated 3D cross-correlation light scattering: improving turbid sample characterization,” Rev. Sci. Instrum. 81(12), 123107 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

R. K. Chakrabarty, N. D. Beres, H. Moosmüller, S. China, C. Mazzoleni, M. K. Dubey, L. Liu, and M. I. Mishchenko, “Soot superaggregates from flaming wildfires and their direct radiative forcing,” Sci. Rep. 4, 5508 (2014).
[Crossref] [PubMed]

Other (3)

ISORG, “Organic photodetectors and large area photosensors,” (September, 2015), http://www.isorg.fr .

O. Glatter, “Static light scattering of large systems,” in Neutron, X-rays and Light. Scattering Methods Applied to Soft Condensed Matter, T. Zemb and P. Lindner, eds. (Elsevier, 2002).

R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic Publishers, 2001).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (1610 KB)      Short movie

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Photographs of a (a) conventional OPS film and (b) zoom in of simply-shaped photosensitive areas (i.e., darker circular disks below the blue protective coating) [12, 13].
Fig. 2
Fig. 2 (a) Schematic and (b) photograph of of a MALS system prototype taking advantage of OPS technology (40 curved photosensitive elements distributed over ≈1° to 179°).
Fig. 3
Fig. 3 (a-b) Shadowgraph images of half of the unfold optical mask and (c-d) transmission images of half of the unfold OPS film (the contrast and colors are adjusted for clarity). The width of all OPS (1mm) and all slits (0.5 mm) are constant in contrary to their heights (see Fig. 4 and Visualization 1) .
Fig. 4
Fig. 4 Monte-Carlo simulations: (a) conditional map of light rays passing through (green and red) the optical mask shown in Fig. 3 and that are detected by an OPS film with a virtually infinite spatial resolution. The green regions identify the optimal photosensitive areas that are printed on the OPS film (i.e., OPSs with required angular resolution and no crosstalk). The white lines delimits the upper and lower angular boundaries of the OPSs; (b) evolution with the scattering angle of the probe volume dimension, the surface of the OPSs and the corresponding product (to which the measured optical signals are directly proportional).
Fig. 5
Fig. 5 (a) Comparison of the LMT and the Monte Carlo simulations with the time averaged experimental scattering diagrams recorded for three latex suspensions and the perpendicular polarization. For clarity, the scattering diagrams of samples 1 and 2 are shifted in intensity; (b) Illustration of the PSDs retrieved with the prototype with those reconstructed with certified values.

Tables (1)

Tables Icon

Table 1 Statistical moments of the PSD of three latex suspensions: certified values (NIST Traceable Standards) and values (i.e. particle size) retrieved with the prototype.

Metrics