Abstract

High-speed electro-optic modulators are among the key elements in any optical interconnect system. In this work we design and demonstrate an electro-optic modulator based on carrier accumulation on a multilayer integrated photonic platform comprising a stack of high quality Si, SiO2, and Si layers. The device consists of a 3-μm radius microdisk with an embedded capacitor. Characterization results reveal an operation bandwidth of exceeding 10 GHz. The device is capable of transmitting 15 Gb/s with the on/off keying format in a single polarization. The proposed structure can be self-trimmed by up to 1 nm in wavelength by applying a dc bias voltage without any power consumption. This feature eliminates the need for power-hungry thermal-based compensation methods to address the resonance wavelength mismatch due to fabrication imperfections.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region

Richard Soref, Joshua R. Hendrickson, and Julian Sweet
Opt. Express 24(9) 9369-9382 (2016)

A low–power high–speed InP microdisk modulator heterogeneously integrated on a SOI waveguide

Jens Hofrichter, Oded Raz, Antonio La Porta, Thomas Morf, Pauline Mechet, Geert Morthier, Tjibbe De Vries, Harm J. S. Dorren, and Bert J. Offrein
Opt. Express 20(9) 9363-9370 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref and B. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  3. D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
    [Crossref]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref] [PubMed]
  5. J. Van Campenhout, M. Pantouvaki, P. Verheyen, S. Selvaraja, G. Lepage, H. Yu, W. Lee, J. Wouters, D. Goossens, M. Moelants, W. Bogaerts, and P. Absil, “Low-Voltage, Low-Loss, Multi-Gb/s Silicon Micro-Ring Modulator based on a MOS Capacitor,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.4.
    [Crossref]
  6. C. Angulo Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, “Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices,” J. Lightwave Technol. 21(10), 2332–2339 (2003).
    [Crossref]
  7. F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
    [Crossref] [PubMed]
  8. E. Timurdogan, C. M. Sorace Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
  9. H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
    [Crossref]
  10. Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21(15), 18236–18248 (2013).
    [Crossref] [PubMed]
  11. M. Sodagar, R. Pourabolghasem, A. A. Eftekhar, and A. Adibi, “High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities,” Opt. Express 22(14), 16767–16777 (2014).
    [Crossref] [PubMed]
  12. M. Sodagar, A. H. Hosseinnia, H. Moradinejad, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “Field-programmable optical devices based on resonance elimination,” Opt. Lett. 39(15), 4545–4548 (2014).
    [Crossref] [PubMed]
  13. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
    [Crossref] [PubMed]
  14. A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
    [Crossref] [PubMed]
  15. D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “High-Q channel-dropping filters using ring resonators with integrated SOAs,” IEEE Photonics Technol. Lett. 14(10), 1442–1444 (2002).
    [Crossref]
  16. S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “tunable microdisk resonator vertically coupled to bus waveguide using epitaxial regrowth and wafer bonding,” Appl. Phys. Lett. 84(5), 651 (2004).
    [Crossref]
  17. D. A. Zauner, J. Hiibner, K. J. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34(8), 780–781 (1998).
    [Crossref]
  18. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
    [Crossref] [PubMed]
  19. M. Sodagar, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Multilayer platform for low-power/passive configurable photonic device,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM2M.3.
  20. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [Crossref] [PubMed]
  21. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008).
    [Crossref] [PubMed]
  22. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2Suppl 2), A293–A308 (2012).
    [Crossref] [PubMed]
  23. T. N. Theis and P. M. Solomon, “In quest of the “next switch”: prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor,” Proc. IEEE 98(12), 2005–2014 (2010).
    [Crossref]
  24. U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
    [Crossref]
  25. H. Moradinejad, A. H. Atabaki, A. H. Hosseinia, A. A. Eftekhar, and A. Adibi, “High-Q resonators on double-layer SOI platform,” In IEEE Photonics Conference (IPC), pp. 430–431, (2013).
  26. G. Ben, Streetman, Sanjay Banerjee, Solid State Electronic Devices, 5th Edition, (Prentice Hall, 1999).

2014 (4)

M. Sodagar, R. Pourabolghasem, A. A. Eftekhar, and A. Adibi, “High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities,” Opt. Express 22(14), 16767–16777 (2014).
[Crossref] [PubMed]

M. Sodagar, A. H. Hosseinnia, H. Moradinejad, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “Field-programmable optical devices based on resonance elimination,” Opt. Lett. 39(15), 4545–4548 (2014).
[Crossref] [PubMed]

E. Timurdogan, C. M. Sorace Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

2013 (3)

2012 (2)

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2Suppl 2), A293–A308 (2012).
[Crossref] [PubMed]

2010 (1)

T. N. Theis and P. M. Solomon, “In quest of the “next switch”: prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor,” Proc. IEEE 98(12), 2005–2014 (2010).
[Crossref]

2009 (1)

2008 (2)

2005 (2)

F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “tunable microdisk resonator vertically coupled to bus waveguide using epitaxial regrowth and wafer bonding,” Appl. Phys. Lett. 84(5), 651 (2004).
[Crossref]

2003 (1)

2002 (1)

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “High-Q channel-dropping filters using ring resonators with integrated SOAs,” IEEE Photonics Technol. Lett. 14(10), 1442–1444 (2002).
[Crossref]

1998 (2)

D. A. Zauner, J. Hiibner, K. J. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34(8), 780–781 (1998).
[Crossref]

U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Adibi, A.

Alic, N.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Almeida, V. R.

Angulo Barrios, C.

Asghari, M.

Askari, M.

Atabaki, A. H.

Baets, R.

Bauters, J. F.

Bennett, B.

R. Soref and B. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).

Bowers, J. E.

Chen, A.

Choi, S. J.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “tunable microdisk resonator vertically coupled to bus waveguide using epitaxial regrowth and wafer bonding,” Appl. Phys. Lett. 84(5), 651 (2004).
[Crossref]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “tunable microdisk resonator vertically coupled to bus waveguide using epitaxial regrowth and wafer bonding,” Appl. Phys. Lett. 84(5), 651 (2004).
[Crossref]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Dapkus, P. D.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “tunable microdisk resonator vertically coupled to bus waveguide using epitaxial regrowth and wafer bonding,” Appl. Phys. Lett. 84(5), 651 (2004).
[Crossref]

Davenport, M. L.

Dong, P.

Doylend, J. K.

Eftekhar, A. A.

Emerson, N.

Fang, A. W.

Fedeli, J. M.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Feng, D.

Gardes, F.

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Gösele, U.

U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

Hamacher, M.

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “High-Q channel-dropping filters using ring resonators with integrated SOAs,” IEEE Photonics Technol. Lett. 14(10), 1442–1444 (2002).
[Crossref]

Heck, M. J. R.

Heidrich, H.

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “High-Q channel-dropping filters using ring resonators with integrated SOAs,” IEEE Photonics Technol. Lett. 14(10), 1442–1444 (2002).
[Crossref]

Hiibner, J.

D. A. Zauner, J. Hiibner, K. J. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34(8), 780–781 (1998).
[Crossref]

Hosseini, E. S.

E. Timurdogan, C. M. Sorace Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).

Hosseinia, A. H.

H. Moradinejad, A. H. Atabaki, A. H. Hosseinia, A. A. Eftekhar, and A. Adibi, “High-Q resonators on double-layer SOI platform,” In IEEE Photonics Conference (IPC), pp. 430–431, (2013).

Hosseinnia, A. H.

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

M. Sodagar, A. H. Hosseinnia, H. Moradinejad, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “Field-programmable optical devices based on resonance elimination,” Opt. Lett. 39(15), 4545–4548 (2014).
[Crossref] [PubMed]

Hu, Y.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Krishnamoorthy, A. V.

Kristensen, M.

D. A. Zauner, J. Hiibner, K. J. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34(8), 780–781 (1998).
[Crossref]

Kung, C. C.

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Li, G.

Li, Q.

Liang, H.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Liao, S.

Lipson, M.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Malone, K. J.

D. A. Zauner, J. Hiibner, K. J. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34(8), 780–781 (1998).
[Crossref]

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Miller, D. A. B.

Moradinejad, H.

M. Sodagar, A. H. Hosseinnia, H. Moradinejad, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “Field-programmable optical devices based on resonance elimination,” Opt. Lett. 39(15), 4545–4548 (2014).
[Crossref] [PubMed]

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

H. Moradinejad, A. H. Atabaki, A. H. Hosseinia, A. A. Eftekhar, and A. Adibi, “High-Q resonators on double-layer SOI platform,” In IEEE Photonics Conference (IPC), pp. 430–431, (2013).

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Panepucci, R.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Peng, Z.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “tunable microdisk resonator vertically coupled to bus waveguide using epitaxial regrowth and wafer bonding,” Appl. Phys. Lett. 84(5), 651 (2004).
[Crossref]

Png, C.

Poon, J. K. S.

Pourabolghasem, R.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Qian, W.

Rabus, D. G.

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “High-Q channel-dropping filters using ring resonators with integrated SOAs,” IEEE Photonics Technol. Lett. 14(10), 1442–1444 (2002).
[Crossref]

Radic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Reed, G.

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Sacher, W. D.

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Schrauwen, J.

Shafiiha, R.

Sodagar, M.

Solomon, P. M.

T. N. Theis and P. M. Solomon, “In quest of the “next switch”: prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor,” Proc. IEEE 98(12), 2005–2014 (2010).
[Crossref]

Sorace Agaskar, C. M.

E. Timurdogan, C. M. Sorace Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).

Soref, R.

R. Soref and B. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Sun, J.

E. Timurdogan, C. M. Sorace Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).

Theis, T. N.

T. N. Theis and P. M. Solomon, “In quest of the “next switch”: prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor,” Proc. IEEE 98(12), 2005–2014 (2010).
[Crossref]

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).

Tong, Q. Y.

U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

Troppenz, U.

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “High-Q channel-dropping filters using ring resonators with integrated SOAs,” IEEE Photonics Technol. Lett. 14(10), 1442–1444 (2002).
[Crossref]

Van Thourhout, D.

Watts, M. R.

E. Timurdogan, C. M. Sorace Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).

Xia, Z.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Yang, Q.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “tunable microdisk resonator vertically coupled to bus waveguide using epitaxial regrowth and wafer bonding,” Appl. Phys. Lett. 84(5), 651 (2004).
[Crossref]

Zauner, D. A.

D. A. Zauner, J. Hiibner, K. J. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34(8), 780–781 (1998).
[Crossref]

Zheng, D.

Zheng, X.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Annu. Rev. Mater. Sci. (1)

U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

Appl. Phys. Lett. (1)

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “tunable microdisk resonator vertically coupled to bus waveguide using epitaxial regrowth and wafer bonding,” Appl. Phys. Lett. 84(5), 651 (2004).
[Crossref]

Electron. Lett. (1)

D. A. Zauner, J. Hiibner, K. J. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34(8), 780–781 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE Photonics J. (1)

H. Moradinejad, A. H. Atabaki, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Double-layer crystalline silicon on insulator material platform for integrated photonic applications,” IEEE Photonics J. 6(6), 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “High-Q channel-dropping filters using ring resonators with integrated SOAs,” IEEE Photonics Technol. Lett. 14(10), 1442–1444 (2002).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (9)

Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21(15), 18236–18248 (2013).
[Crossref] [PubMed]

M. Sodagar, R. Pourabolghasem, A. A. Eftekhar, and A. Adibi, “High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities,” Opt. Express 22(14), 16767–16777 (2014).
[Crossref] [PubMed]

F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref] [PubMed]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[Crossref] [PubMed]

A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
[Crossref] [PubMed]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
[Crossref] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[Crossref] [PubMed]

W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008).
[Crossref] [PubMed]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2Suppl 2), A293–A308 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

T. N. Theis and P. M. Solomon, “In quest of the “next switch”: prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor,” Proc. IEEE 98(12), 2005–2014 (2010).
[Crossref]

Other (4)

H. Moradinejad, A. H. Atabaki, A. H. Hosseinia, A. A. Eftekhar, and A. Adibi, “High-Q resonators on double-layer SOI platform,” In IEEE Photonics Conference (IPC), pp. 430–431, (2013).

G. Ben, Streetman, Sanjay Banerjee, Solid State Electronic Devices, 5th Edition, (Prentice Hall, 1999).

J. Van Campenhout, M. Pantouvaki, P. Verheyen, S. Selvaraja, G. Lepage, H. Yu, W. Lee, J. Wouters, D. Goossens, M. Moelants, W. Bogaerts, and P. Absil, “Low-Voltage, Low-Loss, Multi-Gb/s Silicon Micro-Ring Modulator based on a MOS Capacitor,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.4.
[Crossref]

M. Sodagar, A. H. Hosseinnia, A. A. Eftekhar, and A. Adibi, “Multilayer platform for low-power/passive configurable photonic device,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM2M.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) 3D schematic of the cross section of the accumulation-based EO modulator on a multilayer platform. Two focusing grating couplers are connected to the terminating ends of the access waveguide (not shown) to facilitate the input/output light coupling during characterization (b) Cross section view of the designed doping profile on different layers of the device. The doping on the shaded area can be eliminated to reduce the effect of the parasitic capacitance (c) The corresponding mode profile (magnitude of the electric field) of the first radial transverse electric (TE, electric field parallel to the Si layers) mode of the microdisk resonator obtained around λ ≈1560 nm.
Fig. 2
Fig. 2 (a) Tilted SEM image of the gap region between the access waveguide and the microdisk resonator. False colors are used to accentuate the stacked Si (blue) and SiO2 (pink) layers (b) Top view SEM image of the cladded device after metallization step showing the input/output waveguide, microdisk, and RF electronic pads. Pads are placed close to the microdisk (< 50 µm) to ensure electrically short connections to the device for f ≤ 50 GHz.
Fig. 3
Fig. 3 (a) Transmission spectrum of the device in Fig. 2 for different applied dc voltages with positive polarity. (b) Measured shift in the resonance wavelength with respect to the applied dc voltage for positive (solid-blue curve) and negative (dashed-red curve) polarities.
Fig. 4
Fig. 4 Schematic of the experimental setup for the high-speed ac measurement. DUT: device under test, BPF: band-pass filter.
Fig. 5
Fig. 5 The measured frequency response of the accumulation mode modulator demonstrating a 3-dB bandwidth greater than 10 GHz. The inset (left image) shows the detected signal with a sinusoidal drive at 10 GHz. The inset (right image) is the measured eye-diagram at 15 Gb/s with a 215-1 long NRZ PRBS (quality factor of the eye diagram ≈3.8).

Metrics