Abstract

We report a robust and sensitive optical nanofiber sensor with a femtoliter-scale detection volume. The sensor is fabricated by embedding a 800-nm-diameter nanofiber into a microfluidic chip with probing light propagated perpendicular to a 5-μm-wide detection channel. To verify the effectiveness of the sensor, we present measurements of fluorescence intensity and refractive index (RI) with detection limits of 1 × 10−7 M for fluorescein and 2.8 × 10−4 RIU, respectively. The femtoliter-scale optical nanofiber sensor shown here may provide a compact and versatile sensing platform for sensitive and fast detection of ultra-low-volume samples, as well as studying the dynamics of single molecule.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optofluidic refractive index sensor based on asymmetric diffraction

Xin Tu, Yingdong Luo, Tianye Huang, Jinqiang Gan, and Chaolong Song
Opt. Express 27(13) 17809-17818 (2019)

Simultaneously high-Q and high-sensitivity slotted photonic crystal nanofiber cavity for complex refractive index sensing

Chao-Sheng Deng, Ming-Jun Li, Jie Peng, Wen-Liang Liu, and Jian-Xin Zhong
J. Opt. Soc. Am. B 34(8) 1624-1631 (2017)

Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection

Ming-jie Yin, Bobo Huang, Shaorui Gao, A. Ping Zhang, and Xuesong Ye
Biomed. Opt. Express 7(5) 2067-2077 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Laurence and S. Weiss, “Analytical chemistry. How to detect weak pairs,” Science 299(5607), 667–668 (2003).
    [Crossref] [PubMed]
  2. T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80(3), 1575–1584 (2001).
    [Crossref] [PubMed]
  3. M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
    [Crossref] [PubMed]
  4. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
    [Crossref] [PubMed]
  5. S. Heng, M. C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Advances 3(22), 8308–8317 (2013).
    [Crossref]
  6. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [Crossref] [PubMed]
  7. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [Crossref] [PubMed]
  8. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
    [Crossref] [PubMed]
  9. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [Crossref] [PubMed]
  10. F. Xu, G. Brambilla, and Y. Lu, “A microfluidic refractometric sensor based on gratings in optical fibre microwires,” Opt. Express 17(23), 20866–20871 (2009).
    [Crossref] [PubMed]
  11. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
    [Crossref] [PubMed]
  12. M. Ding, P. Wang, and G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012).
    [Crossref] [PubMed]
  13. X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
    [Crossref] [PubMed]
  14. X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
    [Crossref] [PubMed]
  15. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
    [Crossref] [PubMed]
  16. D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
    [Crossref]
  17. P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. latest advancements and trends,” Anal. Chem. 78(12), 3887–3908 (2006).
    [Crossref] [PubMed]
  18. M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15(1), 137–142 (2007).
    [Crossref] [PubMed]
  19. B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
    [Crossref] [PubMed]
  20. L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluidics 5(6), 727–732 (2008).
    [Crossref]
  21. L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
    [Crossref] [PubMed]
  22. Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
    [Crossref] [PubMed]
  23. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  24. A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17(24), 21704–21711 (2009).
    [Crossref] [PubMed]
  25. S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Opt. Express 18(9), 9474–9485 (2010).
    [Crossref] [PubMed]
  26. P. J. Viskari and J. P. Landers, “Unconventional detection methods for microfluidic devices,” Electrophoresis 27(9), 1797–1810 (2006).
    [Crossref] [PubMed]
  27. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  28. J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92(7), 071108 (2008).
    [Crossref]

2015 (1)

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

2014 (3)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

2013 (2)

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

S. Heng, M. C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Advances 3(22), 8308–8317 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (1)

2009 (2)

2008 (3)

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92(7), 071108 (2008).
[Crossref]

L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluidics 5(6), 727–732 (2008).
[Crossref]

2007 (3)

2006 (2)

P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. latest advancements and trends,” Anal. Chem. 78(12), 3887–3908 (2006).
[Crossref] [PubMed]

P. J. Viskari and J. P. Landers, “Unconventional detection methods for microfluidic devices,” Electrophoresis 27(9), 1797–1810 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (1)

2003 (2)

T. A. Laurence and S. Weiss, “Analytical chemistry. How to detect weak pairs,” Science 299(5607), 667–668 (2003).
[Crossref] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

2002 (1)

M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[Crossref] [PubMed]

2001 (1)

T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80(3), 1575–1584 (2001).
[Crossref] [PubMed]

Abell, A. D.

S. Heng, M. C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Advances 3(22), 8308–8317 (2013).
[Crossref]

Afshar, S.

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Brambilla, G.

Chen, B.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Day, D.

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92(7), 071108 (2008).
[Crossref]

Ding, H.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Ding, M.

Dittrich, P. S.

P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. latest advancements and trends,” Anal. Chem. 78(12), 3887–3908 (2006).
[Crossref] [PubMed]

Dong, W. F.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Dulashko, Y.

Dyba, M.

M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[Crossref] [PubMed]

Fan, R.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

Fan, X.

Fang, W.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Farrell, G.

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Garcia-Fernandez, R.

Gersborg-Hansen, M.

Gong, Q.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Gu, F.

L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluidics 5(6), 727–732 (2008).
[Crossref]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Gu, M.

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92(7), 071108 (2008).
[Crossref]

Guo, X.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

Hell, S. W.

M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[Crossref] [PubMed]

Heng, S.

S. Heng, M. C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Advances 3(22), 8308–8317 (2013).
[Crossref]

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Jiang, X. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Kostecki, R.

S. Heng, M. C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Advances 3(22), 8308–8317 (2013).
[Crossref]

Kristensen, A.

Landers, J. P.

P. J. Viskari and J. P. Landers, “Unconventional detection methods for microfluidic devices,” Electrophoresis 27(9), 1797–1810 (2006).
[Crossref] [PubMed]

Laurence, T. A.

T. A. Laurence and S. Weiss, “Analytical chemistry. How to detect weak pairs,” Science 299(5607), 667–668 (2003).
[Crossref] [PubMed]

Law, M.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Li, B. B.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, X.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, Y.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

Liu, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Lou, J.

Lu, Y.

Mansuripur, M.

Manz, A.

P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. latest advancements and trends,” Anal. Chem. 78(12), 3887–3908 (2006).
[Crossref] [PubMed]

Mazur, E.

Meng, C.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Monro, T. M.

S. Heng, M. C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Advances 3(22), 8308–8317 (2013).
[Crossref]

S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Opt. Express 18(9), 9474–9485 (2010).
[Crossref] [PubMed]

Monzón-Hernández, D.

Nguyen, M. C.

S. Heng, M. C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Advances 3(22), 8308–8317 (2013).
[Crossref]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Rauschenbeutel, A.

Rehband, O.

Semenova, Y.

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Sirbuly, D. J.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

Starr, T. E.

T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80(3), 1575–1584 (2001).
[Crossref] [PubMed]

Stiebeiner, A.

Sumetsky, M.

Sun, H. B.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Tachikawa, K.

P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. latest advancements and trends,” Anal. Chem. 78(12), 3887–3908 (2006).
[Crossref] [PubMed]

Tao, A.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

Thompson, N. L.

T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80(3), 1575–1584 (2001).
[Crossref] [PubMed]

Tong, L.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluidics 5(6), 727–732 (2008).
[Crossref]

J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Villatoro, J.

Viskari, P. J.

P. J. Viskari and J. P. Landers, “Unconventional detection methods for microfluidic devices,” Electrophoresis 27(9), 1797–1810 (2006).
[Crossref] [PubMed]

Wang, H.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, P.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012).
[Crossref] [PubMed]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
[Crossref] [PubMed]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

Warren-Smith, S. C.

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Weiss, S.

T. A. Laurence and S. Weiss, “Analytical chemistry. How to detect weak pairs,” Science 299(5607), 667–668 (2003).
[Crossref] [PubMed]

Windeler, R. S.

Wu, J.

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92(7), 071108 (2008).
[Crossref]

Wu, Q.

Xia, H.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Xiao, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

Xiao, Y. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Xu, B. B.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Xu, F.

Xu, Y.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yang, P.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

Ye, Z.

Yin, X.

L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluidics 5(6), 727–732 (2008).
[Crossref]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Ying, Y.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

Yu, H.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

Yu, X. C.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Zhang, L.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluidics 5(6), 727–732 (2008).
[Crossref]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Zhang, Y. L.

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional nanowire evanescent wave optical sensors,” Adv. Mater. 19(1), 61–66 (2007).
[Crossref]

Anal. Chem. (1)

P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. latest advancements and trends,” Anal. Chem. 78(12), 3887–3908 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Wu, D. Day, and M. Gu, “A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal,” Appl. Phys. Lett. 92(7), 071108 (2008).
[Crossref]

Biophys. J. (1)

T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80(3), 1575–1584 (2001).
[Crossref] [PubMed]

Electrophoresis (1)

P. J. Viskari and J. P. Landers, “Unconventional detection methods for microfluidic devices,” Electrophoresis 27(9), 1797–1810 (2006).
[Crossref] [PubMed]

Lab Chip (2)

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab Chip 11(21), 3720–3724 (2011).
[Crossref] [PubMed]

B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluidics 5(6), 727–732 (2008).
[Crossref]

Nano Lett. (2)

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Opt. Express (9)

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Opt. Express 17(24), 21704–21711 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Opt. Express 18(9), 9474–9485 (2010).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

F. Xu, G. Brambilla, and Y. Lu, “A microfluidic refractometric sensor based on gratings in optical fibre microwires,” Opt. Express 17(23), 20866–20871 (2009).
[Crossref] [PubMed]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[Crossref] [PubMed]

M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15(1), 137–142 (2007).
[Crossref] [PubMed]

J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
[Crossref] [PubMed]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
[Crossref] [PubMed]

M. Ding, P. Wang, and G. Brambilla, “A microfiber coupler tip thermometer,” Opt. Express 20(5), 5402–5408 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[Crossref] [PubMed]

RSC Advances (1)

S. Heng, M. C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Advances 3(22), 8308–8317 (2013).
[Crossref]

Science (2)

T. A. Laurence and S. Weiss, “Analytical chemistry. How to detect weak pairs,” Science 299(5607), 667–668 (2003).
[Crossref] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[Crossref] [PubMed]

Sensors (Basel) (1)

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors (Basel) 15(3), 4890–4898 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic illustration of fabricating SU-8 microfibers drawing from heated SU-8 photoresist. (b) Optical micrograph of as-fabricated SU-8 microfibers with different diameters. Scale bar: 20 μm.
Fig. 2
Fig. 2 (a) Schematic illustration of integration a nanofiber with a microfluidic chip. (b) A typical optical micrograph of a nanofiber-microfluidic chip with a nanofiber crossed a detection channel. (c) Optical micrograph of the side view of a 5-μm-wide channel. (d) Optical micrograph of a 800-nm-diameter nanofiber crossed a 5-μm-wide channel. A bright fluorescence spot excited by evanescent field indicates a detection length of 2.5 μm.
Fig. 3
Fig. 3 Power distribution (Z-direction Poynting vectors) of HE11 mode of a 800-nm-diameter silica nanofibre operated at 473-nm-wavelength, (a) 3D view, and (b) normalized power distribution from the center of the nanofibre to the outside. Inset, normalized power distribution from the surface of the nanofibre to the outside.
Fig. 4
Fig. 4 Calculated fluorescence intensity versus the concentration of fluorescein. Insets: (a-e) Optical micrographs of the fluorescence spots excited by evanescent field outside a 800-nm-diameter nanofiber with fluorescein concentrations of 1 × 10−7, 3 × 10−7, 5 × 10−7, 7 × 10−7, and 1 × 10−6 M, respectively. Laser power: 5 mW, exposure time: 1.0 s. Scale bar: 5 μm.
Fig. 5
Fig. 5 (a) Schematic illustration of the cross section of the detection channel and the nanofiber embedded in the PDMS microfluidic chip; (b) Intensity changes as a function of RI for different ethylene glycol/water mixtures with RI ranging from 1.335 to 1.405 for three detection wavelengths of 700, 800, and 900 nm, respectively. Inset: reversible response of the sensor tested by cycling between water and an ethylene glycol/water mixture, detection wavelength: 900 nm.

Metrics