Abstract

A multi-analyte biosensing platform with ultra-high resolution ( = 0.2 ng/mL),-which is appropriate for the detection in the human serum of a wide range of biomarkers, e.g. those allowing the lung cancer early diagnosis, has been designed. The platform is based on a new configuration of planar ring resonator. The very strong light-matter interaction enabled by the micro-cavity allows a record limit-of-detection of 0.06 pg/mm2, five times better than the state-of-the-art. The device with footprint = 2,200 μm2 for each ring, due to its features, has the potential to be integrated in lab-on-chip microsystems for large-scale screenings of people with high risk of developing cancer.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic crystal microring resonator for label-free biosensing

Stanley M. Lo, Shuren Hu, Girija Gaur, Yiorgos Kostoulas, Sharon M. Weiss, and Philippe M. Fauchet
Opt. Express 25(6) 7046-7054 (2017)

Silicon photonic micro-disk resonators for label-free biosensing

Samantha M. Grist, Shon A. Schmidt, Jonas Flueckiger, Valentina Donzella, Wei Shi, Sahba Talebi Fard, James T. Kirk, Daniel M. Ratner, Karen C. Cheung, and Lukas Chrostowski
Opt. Express 21(7) 7994-8006 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Roth, W. K. Hong, and R. U. Komaki, eds., Lung Cancer (Wiley, 2014).
  2. Cancer Research UK, “Lung cancer survival statistics,” http://www.cancerresearchuk.org/cancer-info/cancerstats/types/lung/survival/lung-cancer-survival-statistics#source5
  3. D. Barh, A. Carpi, M. Verma, and M. Gunduz, eds., Cancer Biomarkers: Minimal and Noninvasive Early Diagnosis and Prognosis (CRC Press, 2014).
  4. J. Wu, Z. Fu, F. Yan, and H. Ju, “Biomedical and clinical applications of Immunoassays and immunosensors for tumor markers,” TrAC-Trend Anal. Chem. 26, 679–688 (2007).
  5. S. K. Arya and S. Bhansali, “Lung cancer and its early detection using biomarker-based biosensors,” Chem. Rev. 111(11), 6783–6809 (2011).
    [Crossref] [PubMed]
  6. M.-C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
    [Crossref]
  7. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
    [Crossref]
  8. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
    [Crossref] [PubMed]
  9. C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
    [Crossref]
  10. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010).
    [Crossref] [PubMed]
  11. H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
    [Crossref] [PubMed]
  12. C. E. Hirales Casillas, J. M. Flores Fernández, E. P. Camberos, E. J. Herrera López, G. L. Pacheco, and M. M. Velázquez, “Current status of circulating protein biomarkers to aid the early detection of lung cancer,” Future Oncol. 10(8), 1501–1513 (2014).
    [Crossref] [PubMed]
  13. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [Crossref] [PubMed]
  14. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974).
    [Crossref]
  15. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref] [PubMed]
  16. O. Parriaux and G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors,” J. Lightwave Technol. 16(4), 573–582 (1998).
    [Crossref]
  17. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [Crossref] [PubMed]
  18. Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
    [Crossref] [PubMed]
  19. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
    [Crossref] [PubMed]
  20. C. Rivet, H. Lee, A. Hirsch, S. Hamilton, and H. Lu, “Microfluidics for medical diagnostics and biosensors,” Chem. Eng. Sci. 66(7), 1490–1507 (2011).
    [Crossref]
  21. K. F. Smith, R. A. Harrison, and S. J. Perkins, “Structural comparisons of the native and reactive-centre-cleaved forms of α 1-antitrypsin by neutron- and X-ray-scattering in solution,” Biochem. J. 267(1), 203–212 (1990).
    [Crossref] [PubMed]
  22. K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
    [Crossref] [PubMed]
  23. Z. Laron, “Insulin-like growth factor 1 (IGF-1): a growth hormone,” J. Clin. Pathol.: Mol. Pathol. 54(5), 311–316 (2001).
    [Crossref] [PubMed]
  24. R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
    [PubMed]
  25. A. J. Luft and F. L. Lorscheider, “Structural analysis of human and bovine alpha-fetoprotein by electron microscopy, image processing, and circular dichroism,” Biochemistry 22(25), 5978–5981 (1983).
    [Crossref] [PubMed]
  26. Y. Kurihara, M. Takama, T. Sekiya, Y. Yoshihara, T. Ooya, and T. Takeuchi, “Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy,” Langmuir 28(38), 13609–13615 (2012).
    [Crossref] [PubMed]
  27. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  28. K. Gazzaz and P. Berini, “Theoretical biosensing performance of surface plasmon polariton Bragg gratings,” Appl. Opt. 54(7), 1673–1690 (2015).
    [Crossref]
  29. M. J. Liu, Photonic devices (Cambridge University, 2005).
  30. R. C. Alferness and P. S. Cross, “Filter characteristics of codirectionally coupled waveguides with weighted coupling,” IEEE J. Quantum Electron. 14(11), 843–847 (1978).
    [Crossref]
  31. K. B. Gylfason, C. F. Carlborg, A. Kaźmierczak, F. Dortu, H. Sohlström, L. Vivien, C. A. Barrios, W. van der Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18(4), 3226–3237 (2010).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

C. E. Hirales Casillas, J. M. Flores Fernández, E. P. Camberos, E. J. Herrera López, G. L. Pacheco, and M. M. Velázquez, “Current status of circulating protein biomarkers to aid the early detection of lung cancer,” Future Oncol. 10(8), 1501–1513 (2014).
[Crossref] [PubMed]

2013 (1)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

2012 (3)

H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
[Crossref] [PubMed]

M.-C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Y. Kurihara, M. Takama, T. Sekiya, Y. Yoshihara, T. Ooya, and T. Takeuchi, “Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy,” Langmuir 28(38), 13609–13615 (2012).
[Crossref] [PubMed]

2011 (3)

S. K. Arya and S. Bhansali, “Lung cancer and its early detection using biomarker-based biosensors,” Chem. Rev. 111(11), 6783–6809 (2011).
[Crossref] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

C. Rivet, H. Lee, A. Hirsch, S. Hamilton, and H. Lu, “Microfluidics for medical diagnostics and biosensors,” Chem. Eng. Sci. 66(7), 1490–1507 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (1)

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

2007 (4)

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[Crossref] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

J. Wu, Z. Fu, F. Yan, and H. Ju, “Biomedical and clinical applications of Immunoassays and immunosensors for tumor markers,” TrAC-Trend Anal. Chem. 26, 679–688 (2007).

2006 (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[Crossref]

2001 (2)

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Z. Laron, “Insulin-like growth factor 1 (IGF-1): a growth hormone,” J. Clin. Pathol.: Mol. Pathol. 54(5), 311–316 (2001).
[Crossref] [PubMed]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

1998 (1)

1993 (1)

R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
[PubMed]

1990 (1)

K. F. Smith, R. A. Harrison, and S. J. Perkins, “Structural comparisons of the native and reactive-centre-cleaved forms of α 1-antitrypsin by neutron- and X-ray-scattering in solution,” Biochem. J. 267(1), 203–212 (1990).
[Crossref] [PubMed]

1983 (1)

A. J. Luft and F. L. Lorscheider, “Structural analysis of human and bovine alpha-fetoprotein by electron microscopy, image processing, and circular dichroism,” Biochemistry 22(25), 5978–5981 (1983).
[Crossref] [PubMed]

1978 (1)

R. C. Alferness and P. S. Cross, “Filter characteristics of codirectionally coupled waveguides with weighted coupling,” IEEE J. Quantum Electron. 14(11), 843–847 (1978).
[Crossref]

1974 (1)

Alam, R.

R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
[PubMed]

Alferness, R. C.

R. C. Alferness and P. S. Cross, “Filter characteristics of codirectionally coupled waveguides with weighted coupling,” IEEE J. Quantum Electron. 14(11), 843–847 (1978).
[Crossref]

Alvarez, M.

M.-C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Armenise, M. N.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Arya, S. K.

S. K. Arya and S. Bhansali, “Lung cancer and its early detection using biomarker-based biosensors,” Chem. Rev. 111(11), 6783–6809 (2011).
[Crossref] [PubMed]

Baets, R.

Bandoh, S.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Barrios, C. A.

Bartolozzi, I.

Berini, P.

Bhansali, S.

S. K. Arya and S. Bhansali, “Lung cancer and its early detection using biomarker-based biosensors,” Chem. Rev. 111(11), 6783–6809 (2011).
[Crossref] [PubMed]

Bienstman, P.

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Camberos, E. P.

C. E. Hirales Casillas, J. M. Flores Fernández, E. P. Camberos, E. J. Herrera López, G. L. Pacheco, and M. M. Velázquez, “Current status of circulating protein biomarkers to aid the early detection of lung cancer,” Future Oncol. 10(8), 1501–1513 (2014).
[Crossref] [PubMed]

Campanella, C. E.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Campanella, C. M.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Carlborg, C. F.

Cheben, P.

Ciminelli, C.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Cross, P. S.

R. C. Alferness and P. S. Cross, “Filter characteristics of codirectionally coupled waveguides with weighted coupling,” IEEE J. Quantum Electron. 14(11), 843–847 (1978).
[Crossref]

De Vos, K.

Delâge, A.

Dell’Olio, F.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

Densmore, A.

Di Falco, A.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Dobashi, N.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Dohmoto, K.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Dortu, F.

Estevez, M.-C.

M.-C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Faubion, D.

R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
[PubMed]

Flores Fernández, J. M.

C. E. Hirales Casillas, J. M. Flores Fernández, E. P. Camberos, E. J. Herrera López, G. L. Pacheco, and M. M. Velázquez, “Current status of circulating protein biomarkers to aid the early detection of lung cancer,” Future Oncol. 10(8), 1501–1513 (2014).
[Crossref] [PubMed]

Forsythe, P.

R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
[PubMed]

Fu, Z.

J. Wu, Z. Fu, F. Yan, and H. Ju, “Biomedical and clinical applications of Immunoassays and immunosensors for tumor markers,” TrAC-Trend Anal. Chem. 26, 679–688 (2007).

Fujita, J.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Gazzaz, K.

Gervay-Hague, J.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Go, J. G.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Gondarenko, A.

Grant, J. A.

R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
[PubMed]

Gylfason, K. B.

Hamilton, S.

C. Rivet, H. Lee, A. Hirsch, S. Hamilton, and H. Lu, “Microfluidics for medical diagnostics and biosensors,” Chem. Eng. Sci. 66(7), 1490–1507 (2011).
[Crossref]

Harrison, R.

R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
[PubMed]

Harrison, R. A.

K. F. Smith, R. A. Harrison, and S. J. Perkins, “Structural comparisons of the native and reactive-centre-cleaved forms of α 1-antitrypsin by neutron- and X-ray-scattering in solution,” Biochem. J. 267(1), 203–212 (1990).
[Crossref] [PubMed]

Herrera López, E. J.

C. E. Hirales Casillas, J. M. Flores Fernández, E. P. Camberos, E. J. Herrera López, G. L. Pacheco, and M. M. Velázquez, “Current status of circulating protein biomarkers to aid the early detection of lung cancer,” Future Oncol. 10(8), 1501–1513 (2014).
[Crossref] [PubMed]

Hirales Casillas, C. E.

C. E. Hirales Casillas, J. M. Flores Fernández, E. P. Camberos, E. J. Herrera López, G. L. Pacheco, and M. M. Velázquez, “Current status of circulating protein biomarkers to aid the early detection of lung cancer,” Future Oncol. 10(8), 1501–1513 (2014).
[Crossref] [PubMed]

Hirsch, A.

C. Rivet, H. Lee, A. Hirsch, S. Hamilton, and H. Lu, “Microfluidics for medical diagnostics and biosensors,” Chem. Eng. Sci. 66(7), 1490–1507 (2011).
[Crossref]

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Hojo, S.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Ishida, T.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Janz, S.

Ju, H.

J. Wu, Z. Fu, F. Yan, and H. Ju, “Biomedical and clinical applications of Immunoassays and immunosensors for tumor markers,” TrAC-Trend Anal. Chem. 26, 679–688 (2007).

Kang, K. N.

H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
[Crossref] [PubMed]

Kazmierczak, A.

Kim, C. W.

H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
[Crossref] [PubMed]

Kim, Y.

H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
[Crossref] [PubMed]

Kim, Y. T.

H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
[Crossref] [PubMed]

Krauss, T. F.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Kurihara, Y.

Y. Kurihara, M. Takama, T. Sekiya, Y. Yoshihara, T. Ooya, and T. Takeuchi, “Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy,” Langmuir 28(38), 13609–13615 (2012).
[Crossref] [PubMed]

Lambeck, P. V.

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[Crossref]

Lapointe, J.

Laron, Z.

Z. Laron, “Insulin-like growth factor 1 (IGF-1): a growth hormone,” J. Clin. Pathol.: Mol. Pathol. 54(5), 311–316 (2001).
[Crossref] [PubMed]

Lechuga, L. M.

M.-C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Lee, H.

C. Rivet, H. Lee, A. Hirsch, S. Hamilton, and H. Lu, “Microfluidics for medical diagnostics and biosensors,” Chem. Eng. Sci. 66(7), 1490–1507 (2011).
[Crossref]

Lee, H. J.

H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
[Crossref] [PubMed]

Lett-Brown, M. A.

R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
[PubMed]

Levy, J. S.

Li, Y.

Lipson, M.

Liu, G. Y.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Liu, M.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Liu, Q. Y.

Lopinski, G.

Lorscheider, F. L.

A. J. Luft and F. L. Lorscheider, “Structural analysis of human and bovine alpha-fetoprotein by electron microscopy, image processing, and circular dichroism,” Biochemistry 22(25), 5978–5981 (1983).
[Crossref] [PubMed]

Lu, H.

C. Rivet, H. Lee, A. Hirsch, S. Hamilton, and H. Lu, “Microfluidics for medical diagnostics and biosensors,” Chem. Eng. Sci. 66(7), 1490–1507 (2011).
[Crossref]

Luft, A. J.

A. J. Luft and F. L. Lorscheider, “Structural analysis of human and bovine alpha-fetoprotein by electron microscopy, image processing, and circular dichroism,” Biochemistry 22(25), 5978–5981 (1983).
[Crossref] [PubMed]

Ma, R.

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Nolting, B.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Ohtsuki, Y.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Ooya, T.

Y. Kurihara, M. Takama, T. Sekiya, Y. Yoshihara, T. Ooya, and T. Takeuchi, “Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy,” Langmuir 28(38), 13609–13615 (2012).
[Crossref] [PubMed]

Pacheco, G. L.

C. E. Hirales Casillas, J. M. Flores Fernández, E. P. Camberos, E. J. Herrera López, G. L. Pacheco, and M. M. Velázquez, “Current status of circulating protein biomarkers to aid the early detection of lung cancer,” Future Oncol. 10(8), 1501–1513 (2014).
[Crossref] [PubMed]

Palmer, K. F.

Park, P. J.

H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
[Crossref] [PubMed]

Parriaux, O.

Passaro, V. M. N.

Perkins, S. J.

K. F. Smith, R. A. Harrison, and S. J. Perkins, “Structural comparisons of the native and reactive-centre-cleaved forms of α 1-antitrypsin by neutron- and X-ray-scattering in solution,” Biochem. J. 267(1), 203–212 (1990).
[Crossref] [PubMed]

Rivet, C.

C. Rivet, H. Lee, A. Hirsch, S. Hamilton, and H. Lu, “Microfluidics for medical diagnostics and biosensors,” Chem. Eng. Sci. 66(7), 1490–1507 (2011).
[Crossref]

Schacht, E.

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Schmid, J. H.

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Scullion, M. G.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Sekiya, T.

Y. Kurihara, M. Takama, T. Sekiya, Y. Yoshihara, T. Ooya, and T. Takeuchi, “Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy,” Langmuir 28(38), 13609–13615 (2012).
[Crossref] [PubMed]

Shin, Y. S.

H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
[Crossref] [PubMed]

Smith, K. F.

K. F. Smith, R. A. Harrison, and S. J. Perkins, “Structural comparisons of the native and reactive-centre-cleaved forms of α 1-antitrypsin by neutron- and X-ray-scattering in solution,” Biochem. J. 267(1), 203–212 (1990).
[Crossref] [PubMed]

Sohlström, H.

Stafford, S.

R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
[PubMed]

Stemme, G.

Takahara, J.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Takama, M.

Y. Kurihara, M. Takama, T. Sekiya, Y. Yoshihara, T. Ooya, and T. Takeuchi, “Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy,” Langmuir 28(38), 13609–13615 (2012).
[Crossref] [PubMed]

Takeuchi, T.

Y. Kurihara, M. Takama, T. Sekiya, Y. Yoshihara, T. Ooya, and T. Takeuchi, “Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy,” Langmuir 28(38), 13609–13615 (2012).
[Crossref] [PubMed]

Tan, Y. H.

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Ueda, Y.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Vachon, M.

van der Wijngaart, W.

Velázquez, M. M.

C. E. Hirales Casillas, J. M. Flores Fernández, E. P. Camberos, E. J. Herrera López, G. L. Pacheco, and M. M. Velázquez, “Current status of circulating protein biomarkers to aid the early detection of lung cancer,” Future Oncol. 10(8), 1501–1513 (2014).
[Crossref] [PubMed]

Veldhuis, G. J.

Vivien, L.

Williams, D.

Wu, J.

J. Wu, Z. Fu, F. Yan, and H. Ju, “Biomedical and clinical applications of Immunoassays and immunosensors for tumor markers,” TrAC-Trend Anal. Chem. 26, 679–688 (2007).

Xu, D.-X.

Yamaji, Y.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Yan, F.

J. Wu, Z. Fu, F. Yan, and H. Ju, “Biomedical and clinical applications of Immunoassays and immunosensors for tumor markers,” TrAC-Trend Anal. Chem. 26, 679–688 (2007).

Yang, Y.

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Yoshihara, Y.

Y. Kurihara, M. Takama, T. Sekiya, Y. Yoshihara, T. Ooya, and T. Takeuchi, “Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy,” Langmuir 28(38), 13609–13615 (2012).
[Crossref] [PubMed]

Zhang, D.

ACS Nano (1)

Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. Gervay-Hague, and G. Y. Liu, “A nanoengineering approach for investigation and regulation of protein immobilization,” ACS Nano 2(11), 2374–2384 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochem. J. (1)

K. F. Smith, R. A. Harrison, and S. J. Perkins, “Structural comparisons of the native and reactive-centre-cleaved forms of α 1-antitrypsin by neutron- and X-ray-scattering in solution,” Biochem. J. 267(1), 203–212 (1990).
[Crossref] [PubMed]

Biochemistry (1)

A. J. Luft and F. L. Lorscheider, “Structural analysis of human and bovine alpha-fetoprotein by electron microscopy, image processing, and circular dichroism,” Biochemistry 22(25), 5978–5981 (1983).
[Crossref] [PubMed]

Biosens. Bioelectron. (2)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[Crossref] [PubMed]

Chem. Eng. Sci. (1)

C. Rivet, H. Lee, A. Hirsch, S. Hamilton, and H. Lu, “Microfluidics for medical diagnostics and biosensors,” Chem. Eng. Sci. 66(7), 1490–1507 (2011).
[Crossref]

Chem. Rev. (1)

S. K. Arya and S. Bhansali, “Lung cancer and its early detection using biomarker-based biosensors,” Chem. Rev. 111(11), 6783–6809 (2011).
[Crossref] [PubMed]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Future Oncol. (1)

C. E. Hirales Casillas, J. M. Flores Fernández, E. P. Camberos, E. J. Herrera López, G. L. Pacheco, and M. M. Velázquez, “Current status of circulating protein biomarkers to aid the early detection of lung cancer,” Future Oncol. 10(8), 1501–1513 (2014).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

R. C. Alferness and P. S. Cross, “Filter characteristics of codirectionally coupled waveguides with weighted coupling,” IEEE J. Quantum Electron. 14(11), 843–847 (1978).
[Crossref]

Int. J. Cancer (1)

K. Dohmoto, S. Hojo, J. Fujita, Y. Yang, Y. Ueda, S. Bandoh, Y. Yamaji, Y. Ohtsuki, N. Dobashi, T. Ishida, and J. Takahara, “The role of caspase 3 in producing cytokeratin 19 fragment (CYFRA21-1) in human lung cancer cell lines,” Int. J. Cancer 91(4), 468–473 (2001).
[Crossref] [PubMed]

J. Clin. Pathol.: Mol. Pathol. (1)

Z. Laron, “Insulin-like growth factor 1 (IGF-1): a growth hormone,” J. Clin. Pathol.: Mol. Pathol. 54(5), 311–316 (2001).
[Crossref] [PubMed]

J. Immunol. (1)

R. Alam, S. Stafford, P. Forsythe, R. Harrison, D. Faubion, M. A. Lett-Brown, and J. A. Grant, “RANTES is a chemotactic and activating factor for human eosinophils,” J. Immunol. 150(8 Pt 1), 3442–3448 (1993).
[PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Thorac. Cardiovasc. Surg. (1)

H. J. Lee, Y. T. Kim, P. J. Park, Y. S. Shin, K. N. Kang, Y. Kim, and C. W. Kim, “A novel detection method of non-small cell lung cancer using multiplexed bead-based serum biomarker profiling,” J. Thorac. Cardiovasc. Surg. 143(2), 421–427 (2012).
[Crossref] [PubMed]

Langmuir (1)

Y. Kurihara, M. Takama, T. Sekiya, Y. Yoshihara, T. Ooya, and T. Takeuchi, “Fabrication of carboxylated silicon nitride sensor chips for detection of antigen-antibody reaction using microfluidic reflectometric interference spectroscopy,” Langmuir 28(38), 13609–13615 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M.-C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Meas. Sci. Technol. (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Prog. Quantum Electron. (1)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

TrAC-Trend Anal. Chem. (1)

J. Wu, Z. Fu, F. Yan, and H. Ju, “Biomedical and clinical applications of Immunoassays and immunosensors for tumor markers,” TrAC-Trend Anal. Chem. 26, 679–688 (2007).

Other (4)

M. J. Liu, Photonic devices (Cambridge University, 2005).

J. A. Roth, W. K. Hong, and R. U. Komaki, eds., Lung Cancer (Wiley, 2014).

Cancer Research UK, “Lung cancer survival statistics,” http://www.cancerresearchuk.org/cancer-info/cancerstats/types/lung/survival/lung-cancer-survival-statistics#source5

D. Barh, A. Carpi, M. Verma, and M. Gunduz, eds., Cancer Biomarkers: Minimal and Noninvasive Early Diagnosis and Prognosis (CRC Press, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Configuration of the multi-analyte biosensor.
Fig. 2
Fig. 2 Waveguide configuration. The inset shows the functionalization adlayer and the different molecules in the aqueous solution before the binding (BF) and after the binding (AB). The selective binding between the target molecules and the functionalization layer is shown. The average thickness of the adlayer is a before the binding and (a + δa) after the binding.
Fig. 3
Fig. 3 Waveguide surface sensitivity vs. hS, for hT = 400 nm and 500 nm, wT = 800 nm and 1000 nm.
Fig. 4
Fig. 4 Fundamental quasi-TM mode supported by the optimized waveguide. Normalized |Ey| is plotted.
Fig. 5
Fig. 5 Q-factor vs. ring radius. Extinction ratio of the spectral response = 8 dB
Fig. 6
Fig. 6 (a) LOD dependence on the ring radius. (b) Resolution as function of the radius.
Fig. 7
Fig. 7 (a) LOD degradation vs. δ, for a ring radius = 20 µm.
Fig. 8
Fig. 8 Normalized optical spectrum at the output of the bus waveguide when the concentration of all biomarkers in the biologic fluid under analysis is zero.
Fig. 9
Fig. 9 Coupler formed by a straight waveguide and a bent one.
Fig. 10
Fig. 10 Coupling efficiency vs. the gap between the straight bus waveguide and the ring.
Fig. 11
Fig. 11 Spectral response of the ring resonator coupled to one bus waveguide.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

LOD= n FL n S n FL / c Δ λ 0 min [ λ 0 a ] 1
λ 0 a = λ 0 n eff n eff a = λ 0 n eff n eff a ,
LOD= n FL n S n FL / c λ 0 200 Q [ λ 0 n eff n eff a ] 1 .
d( z )= R + d 0 - R 2 - z 2
κ( z ) =K 1 exp[ K 2 d( z ) ] =K 1 exp[ K 2 ( R + d 0 - R 2 - z 2 ) ]
{ dA 1 ( z ) dz = -i κ( z ) A 2 ( z ) dA 2 ( z ) dz = -i κ( z ) A 1 ( z ) .
a 1 ( -z* ) = 1 , a 2 ( -z* ) = 0.
η = | a 2 ( z* ) | 2 .
T( ν )= γ-η - γ e iβL e - αL /2 1- γ-η e iβL e - αL /2 = γ+ γ 2 e -αL η2 e - αL /2 γ γ-η cos( βL ) 1+ e -αL ( γ-η )2 e - αL /2 γ γ-η cos( βL )
T max = γ + γ 2 e -αL - η + γ-η e - αL /2 1-( γ-η ) e -αL + γ-η e - αL /2 ,
T min = γ + γ 2 e -αL - η - γ-η e - αL /2 1-( γ-η ) e -αL - γ-η e - αL /2 .
T( ν ) = T min + T max - T min 2
Q = ν 0 ν 2 - ν 1 = c [ 4πν 0 | Ln eff arccos( 2e αL /2 γ-η γ-η+e αL ) ( arcosh( 2e αL /2 γ-η γ-η+e αL ) ) 2 + 2 L 2 n eff 2 ν 0 2 c 2 | ] -1

Metrics