Abstract

A novel conducting filament (CF)-embedded indium tin oxide (ITO) film is fabricated using an electrical breakdown method. To assess the performance of this layer as an ohmic contact, it is applied to GaN (gallium nitride) light-emitting diodes (LEDs) as a p-type electrode for comparison with typical GaN LEDs using metallic ITO. The operating voltage and output power of the LED with the CF embedded ITO are 3.93 V and 8.49 mW, respectively, at an injection current of 100 mA. This is comparable to the operating voltage and output power of the conventionally fabricated LEDs using metallic ITO (3.93 V and 8.43 mW). Moreover, the CF-ITO LED displays uniform and bright light emission indicating excellent current injection and spreading. These results suggest that the proposed method of forming ohmic contacts is at least as effective as the conventional method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes

Jung-Hong Min, Myungwoo Son, Si-Young Bae, Jun-Yeob Lee, Joosun Yun, Min-Jae Maeng, Dae-Gyeon Kwon, Yongsup Park, Jong-In Shim, Moon-Ho Ham, and Dong-Seon Lee
Opt. Express 22(S4) A1040-A1050 (2014)

Light-extraction enhancement of GaN-based 395  nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode

Jin Xu, Wei Zhang, Meng Peng, Jiangnan Dai, and Changqing Chen
Opt. Lett. 43(11) 2684-2687 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [Crossref] [PubMed]
  2. A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
    [Crossref] [PubMed]
  3. E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for photovoltaics,” Mater. Res. Soc. Bull. 32(03), 242–247 (2007).
    [Crossref]
  4. D. J. Chae, D. Y. Kim, T. G. Kim, Y. M. Sung, and M. D. Kim, “AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes,” Appl. Phys. Lett. 100(8), 081110 (2012).
    [Crossref]
  5. S. Ghosh, H. S. Kim, K. P. Hong, and C. M. Lee, “Microstructure of indium tin oxide films deposited on porous silicon by rf-sputtering,” Mater. Sci. Eng. B 95(2), 171–179 (2002).
    [Crossref]
  6. W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
    [Crossref] [PubMed]
  7. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
    [Crossref] [PubMed]
  8. B. Dan, G. C. Irvin, and M. Pasquali, “Continuous and scalable fabrication of transparent conducting carbon nanotube films,” ACS Nano 3(4), 835–843 (2009).
    [Crossref] [PubMed]
  9. D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
    [Crossref]
  10. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref] [PubMed]
  11. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
    [Crossref]
  12. H. Morkoç, “Materials properties, physics and growth,” in Handbook of Nitride Semiconductors and Devices (Willey-VCH, 2008).
  13. H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
    [Crossref]
  14. S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4, 5827 (2014).
    [PubMed]
  15. H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
    [Crossref]
  16. T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium onVLSI Tech. Dig. (IEEE, 2012), pp. 73–74.
  17. Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, and K. Aono, “Demonstration of high-density ReRAM ensuring 10-year retention at 85°C based on a newly developed reliability model,” in Conference on IEDM Tech. Dig. (IEEE, 2011), pp. 721–724.
  18. J. Qi, M. Olmedo, J.-G. Zheng, and J. Liu, “Multimode resistive switching in single ZnO nanoisland system,” Sci. Rep. 3, 2405 (2013).
    [Crossref] [PubMed]
  19. K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
    [Crossref]
  20. T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
    [Crossref]
  21. M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
    [Crossref]
  22. V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
    [Crossref]
  23. Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
    [Crossref]
  24. S. Kim, S. B. Kim, and H. C. Choi, “Influence of thermal annealing on the microstructural properties of indium tin oxide nanoparticles,” Bull. Korean Chem. Soc. 33(1), 194–198 (2012).
    [Crossref]
  25. E. Lee, M. Gwon, D.-W. Kim, and H. Kim, “Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions,” Appl. Phys. Lett. 98(13), 132905 (2011).
    [Crossref]

2014 (2)

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4, 5827 (2014).
[PubMed]

2013 (5)

J. Qi, M. Olmedo, J.-G. Zheng, and J. Liu, “Multimode resistive switching in single ZnO nanoisland system,” Sci. Rep. 3, 2405 (2013).
[Crossref] [PubMed]

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

2012 (3)

S. Kim, S. B. Kim, and H. C. Choi, “Influence of thermal annealing on the microstructural properties of indium tin oxide nanoparticles,” Bull. Korean Chem. Soc. 33(1), 194–198 (2012).
[Crossref]

M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

D. J. Chae, D. Y. Kim, T. G. Kim, Y. M. Sung, and M. D. Kim, “AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes,” Appl. Phys. Lett. 100(8), 081110 (2012).
[Crossref]

2011 (4)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

E. Lee, M. Gwon, D.-W. Kim, and H. Kim, “Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions,” Appl. Phys. Lett. 98(13), 132905 (2011).
[Crossref]

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

2010 (5)

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

2009 (1)

B. Dan, G. C. Irvin, and M. Pasquali, “Continuous and scalable fabrication of transparent conducting carbon nanotube films,” ACS Nano 3(4), 835–843 (2009).
[Crossref] [PubMed]

2007 (1)

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for photovoltaics,” Mater. Res. Soc. Bull. 32(03), 242–247 (2007).
[Crossref]

2002 (1)

S. Ghosh, H. S. Kim, K. P. Hong, and C. M. Lee, “Microstructure of indium tin oxide films deposited on porous silicon by rf-sputtering,” Mater. Sci. Eng. B 95(2), 171–179 (2002).
[Crossref]

Ahn, J.-H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

An, H.-M.

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Bertaud, T.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Burkhard, G. F.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Chae, D. J.

D. J. Chae, D. Y. Kim, T. G. Kim, Y. M. Sung, and M. D. Kim, “AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes,” Appl. Phys. Lett. 100(8), 081110 (2012).
[Crossref]

Chai, L.

M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Chang, T.-C.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Chen, T. L.

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

Chen, Y.-T.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Chikyow, T.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Cho, J.

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

Choi, H. C.

S. Kim, S. B. Kim, and H. C. Choi, “Influence of thermal annealing on the microstructural properties of indium tin oxide nanoparticles,” Bull. Korean Chem. Soc. 33(1), 194–198 (2012).
[Crossref]

Chong, T. C.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Chu, A.-K.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Chua, E. K.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Chung, H.-B.

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

Cui, Y.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Dan, B.

B. Dan, G. C. Irvin, and M. Pasquali, “Continuous and scalable fabrication of transparent conducting carbon nanotube films,” ACS Nano 3(4), 835–843 (2009).
[Crossref] [PubMed]

Fortunato, E.

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for photovoltaics,” Mater. Res. Soc. Bull. 32(03), 242–247 (2007).
[Crossref]

Gan, D.-S.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Gaynor, W.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Ghosh, D. S.

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

Ghosh, S.

S. Ghosh, H. S. Kim, K. P. Hong, and C. M. Lee, “Microstructure of indium tin oxide films deposited on porous silicon by rf-sputtering,” Mater. Sci. Eng. B 95(2), 171–179 (2002).
[Crossref]

Ginley, D.

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for photovoltaics,” Mater. Res. Soc. Bull. 32(03), 242–247 (2007).
[Crossref]

Greiner, M. T.

M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Gwon, M.

E. Lee, M. Gwon, D.-W. Kim, and H. Kim, “Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions,” Appl. Phys. Lett. 98(13), 132905 (2011).
[Crossref]

Han, I. K.

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4, 5827 (2014).
[PubMed]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Helander, M. G.

M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Hong, K. P.

S. Ghosh, H. S. Kim, K. P. Hong, and C. M. Lee, “Microstructure of indium tin oxide films deposited on porous silicon by rf-sputtering,” Mater. Sci. Eng. B 95(2), 171–179 (2002).
[Crossref]

Hosono, H.

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for photovoltaics,” Mater. Res. Soc. Bull. 32(03), 242–247 (2007).
[Crossref]

Hu, L.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Huang, H.-C.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Huang, J.-J.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Irvin, G. C.

B. Dan, G. C. Irvin, and M. Pasquali, “Continuous and scalable fabrication of transparent conducting carbon nanotube films,” ACS Nano 3(4), 835–843 (2009).
[Crossref] [PubMed]

Jiang, Y.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Kamiya, K.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Kim, C. S.

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

Kim, D. Y.

D. J. Chae, D. Y. Kim, T. G. Kim, Y. M. Sung, and M. D. Kim, “AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes,” Appl. Phys. Lett. 100(8), 081110 (2012).
[Crossref]

Kim, D.-W.

E. Lee, M. Gwon, D.-W. Kim, and H. Kim, “Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions,” Appl. Phys. Lett. 98(13), 132905 (2011).
[Crossref]

Kim, H.

E. Lee, M. Gwon, D.-W. Kim, and H. Kim, “Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions,” Appl. Phys. Lett. 98(13), 132905 (2011).
[Crossref]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. S.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

S. Ghosh, H. S. Kim, K. P. Hong, and C. M. Lee, “Microstructure of indium tin oxide films deposited on porous silicon by rf-sputtering,” Mater. Sci. Eng. B 95(2), 171–179 (2002).
[Crossref]

Kim, H.-D.

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4, 5827 (2014).
[PubMed]

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

Kim, K. C.

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

Kim, K. H.

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4, 5827 (2014).
[PubMed]

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, M. D.

D. J. Chae, D. Y. Kim, T. G. Kim, Y. M. Sung, and M. D. Kim, “AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes,” Appl. Phys. Lett. 100(8), 081110 (2012).
[Crossref]

Kim, S.

S. Kim, S. B. Kim, and H. C. Choi, “Influence of thermal annealing on the microstructural properties of indium tin oxide nanoparticles,” Bull. Korean Chem. Soc. 33(1), 194–198 (2012).
[Crossref]

Kim, S. B.

S. Kim, S. B. Kim, and H. C. Choi, “Influence of thermal annealing on the microstructural properties of indium tin oxide nanoparticles,” Bull. Korean Chem. Soc. 33(1), 194–198 (2012).
[Crossref]

Kim, S. J.

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4, 5827 (2014).
[PubMed]

Kim, T. G.

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4, 5827 (2014).
[PubMed]

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

D. J. Chae, D. Y. Kim, T. G. Kim, Y. M. Sung, and M. D. Kim, “AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes,” Appl. Phys. Lett. 100(8), 081110 (2012).
[Crossref]

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

Kim, Y. H.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kumar, A.

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

Lee, C. M.

S. Ghosh, H. S. Kim, K. P. Hong, and C. M. Lee, “Microstructure of indium tin oxide films deposited on porous silicon by rf-sputtering,” Mater. Sci. Eng. B 95(2), 171–179 (2002).
[Crossref]

Lee, E.

E. Lee, M. Gwon, D.-W. Kim, and H. Kim, “Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions,” Appl. Phys. Lett. 98(13), 132905 (2011).
[Crossref]

Lee, E. B.

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

Lee, J.-Y.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Leo, K.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Li, M. H.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Liu, J.

J. Qi, M. Olmedo, J.-G. Zheng, and J. Liu, “Multimode resistive switching in single ZnO nanoisland system,” Sci. Rep. 3, 2405 (2013).
[Crossref] [PubMed]

Lu, Z.-H.

M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Machala, M. L.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Magyari-Köpe, B.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

May, C.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

McGehee, M. D.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Müller-Meskamp, L.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Nagata, T.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Nam, K.-H.

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

Nishi, Y.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Niwa, M.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Olmedo, M.

J. Qi, M. Olmedo, J.-G. Zheng, and J. Liu, “Multimode resistive switching in single ZnO nanoisland system,” Sci. Rep. 3, 2405 (2013).
[Crossref] [PubMed]

Özyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Paine, D. C.

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for photovoltaics,” Mater. Res. Soc. Bull. 32(03), 242–247 (2007).
[Crossref]

Pan, J. S.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Park, S.-G.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Pasquali, M.

B. Dan, G. C. Irvin, and M. Pasquali, “Continuous and scalable fabrication of transparent conducting carbon nanotube films,” ACS Nano 3(4), 835–843 (2009).
[Crossref] [PubMed]

Peumans, P.

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

Pruneri, V.

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

Qi, J.

J. Qi, M. Olmedo, J.-G. Zheng, and J. Liu, “Multimode resistive switching in single ZnO nanoisland system,” Sci. Rep. 3, 2405 (2013).
[Crossref] [PubMed]

Robertson, J.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Sachse, C.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Schoof, G.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Schroeder, T.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Schubert, E. F.

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

Seo, Y.

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

Shi, L. P.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Shin, H. W.

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4, 5827 (2014).
[PubMed]

Shiraishi, K.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Sowinska, M.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Stikanov, V.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Sung, Y. M.

D. J. Chae, D. Y. Kim, T. G. Kim, Y. M. Sung, and M. D. Kim, “AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes,” Appl. Phys. Lett. 100(8), 081110 (2012).
[Crossref]

Sze, S. M.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Tang, W.-M.

M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Thiess, S.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Tillack, B.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Tsai, M.-J.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Tseng, H.-C.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Walczyk, Ch.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Walczyk, D.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Wenger, Ch.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Wolansky, D.

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Yamada, K.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Yang, J.-B.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Yang, M. Y.

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Yang, P.-C.

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

Zhang, Z.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Zhao, R.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Zheng, J.-G.

J. Qi, M. Olmedo, J.-G. Zheng, and J. Liu, “Multimode resistive switching in single ZnO nanoisland system,” Sci. Rep. 3, 2405 (2013).
[Crossref] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Zhou, C.

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

Zhuo, V. Y.-Q.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

ACS Nano (3)

A. Kumar and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4(1), 11–14 (2010).
[Crossref] [PubMed]

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955–2963 (2010).
[Crossref] [PubMed]

B. Dan, G. C. Irvin, and M. Pasquali, “Continuous and scalable fabrication of transparent conducting carbon nanotube films,” ACS Nano 3(4), 835–843 (2009).
[Crossref] [PubMed]

Adv. Funct. Mater. (3)

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

H.-D. Kim, H.-M. An, K. H. Kim, S. J. Kim, C. S. Kim, J. Cho, E. F. Schubert, and T. G. Kim, “A Universal method of producing transparent electrodes using wide-bandgap materials,” Adv. Funct. Mater. 24(11), 1575–1581 (2014).
[Crossref]

M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater. 22(21), 4557–4568 (2012).
[Crossref]

Adv. Mater. (2)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, “Smooth nanowire/polymer composite transparent electrodes,” Adv. Mater. 23(26), 2905–2910 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett. 96(4), 041109 (2010).
[Crossref]

D. J. Chae, D. Y. Kim, T. G. Kim, Y. M. Sung, and M. D. Kim, “AlGaN-based ultraviolet light-emitting diodes using fluorine-doped indium tin oxide electrodes,” Appl. Phys. Lett. 100(8), 081110 (2012).
[Crossref]

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Y.-T. Chen, T.-C. Chang, J.-J. Huang, H.-C. Tseng, P.-C. Yang, A.-K. Chu, J.-B. Yang, H.-C. Huang, D.-S. Gan, M.-J. Tsai, and S. M. Sze, “Influence of molybdenum doping on the switching characteristic in silicon oxide-based resistive switching memory,” Appl. Phys. Lett. 102(4), 043508 (2013).
[Crossref]

E. Lee, M. Gwon, D.-W. Kim, and H. Kim, “Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions,” Appl. Phys. Lett. 98(13), 132905 (2011).
[Crossref]

Bull. Korean Chem. Soc. (1)

S. Kim, S. B. Kim, and H. C. Choi, “Influence of thermal annealing on the microstructural properties of indium tin oxide nanoparticles,” Bull. Korean Chem. Soc. 33(1), 194–198 (2012).
[Crossref]

ECS Trans. (1)

T. Bertaud, D. Walczyk, M. Sowinska, D. Wolansky, B. Tillack, G. Schoof, V. Stikanov, Ch. Wenger, S. Thiess, T. Schroeder, and Ch. Walczyk, “HfO2-based RRAM for embedded nonvolatile memory: from materials science to integrated 1T1R RRAM arrays,” ECS Trans. 50(4), 21–26 (2013).
[Crossref]

Mater. Res. Soc. Bull. (1)

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, “Transparent conducting oxides for photovoltaics,” Mater. Res. Soc. Bull. 32(03), 242–247 (2007).
[Crossref]

Mater. Sci. Eng. B (1)

S. Ghosh, H. S. Kim, K. P. Hong, and C. M. Lee, “Microstructure of indium tin oxide films deposited on porous silicon by rf-sputtering,” Mater. Sci. Eng. B 95(2), 171–179 (2002).
[Crossref]

Nat. Nanotechnol. (1)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Phys. Rev. B (1)

K. Kamiya, M. Y. Yang, T. Nagata, S.-G. Park, B. Magyari-Köpe, T. Chikyow, K. Yamada, M. Niwa, Y. Nishi, and K. Shiraishi, “Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories,” Phys. Rev. B 87(15), 155201 (2013).
[Crossref]

Sci. Rep. (2)

J. Qi, M. Olmedo, J.-G. Zheng, and J. Liu, “Multimode resistive switching in single ZnO nanoisland system,” Sci. Rep. 3, 2405 (2013).
[Crossref] [PubMed]

S. J. Kim, H.-D. Kim, K. H. Kim, H. W. Shin, I. K. Han, and T. G. Kim, “Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED,” Sci. Rep. 4, 5827 (2014).
[PubMed]

Semicond. Sci. Technol. (1)

H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, E. B. Lee, and T. G. Kim, “Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells,” Semicond. Sci. Technol. 25(6), 065002 (2010).
[Crossref]

Other (3)

T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, and K. Aono, “Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation,” in Symposium onVLSI Tech. Dig. (IEEE, 2012), pp. 73–74.

Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, and K. Aono, “Demonstration of high-density ReRAM ensuring 10-year retention at 85°C based on a newly developed reliability model,” in Conference on IEDM Tech. Dig. (IEEE, 2011), pp. 721–724.

H. Morkoç, “Materials properties, physics and growth,” in Handbook of Nitride Semiconductors and Devices (Willey-VCH, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic illustration of the proposed GaN LED using CF-embedded ITO and supporting data to explain its electrical conduction mechanism; (a) A schematic view of GaN LED with CF-embedded ITO after EBD; a magnified atomic structure detail shows that CFs consist of a chain of oxygen vacancies within the crystal structure of the ITO. (b) Current–voltage characteristic curves measured for a 20-nm-thick I-ITO before and after EBD. (c) Long-term stability of LRS at 1 V as a function of retention time. (d) Oxygen concentrations observed for the I-ITO and at the interface between the I-ITO and p-GaN layer before and after EBD using Auger electron spectroscopy; the inset shows the atomic concentration of M-ITO. (e) Binding energies of In, Sn, and O elements on M-ITO and I-ITO films before and after EBD, determined by x-ray photoelectron spectroscopy.
Fig. 2
Fig. 2 Electrical properties of (a) the I-ITO before EBD and the proposed CF-embedded ITO after EBD on p-GaN layers, and (b) the M-ITO on p-GaN layer; I–V characteristic curves measured for different pad spacings of I-ITO deposited on p-GaN layers.
Fig. 3
Fig. 3 Optical transmittance of the proposed ITO after EBD; (a) Optical transmission spectra of the proposed TCE layers on quartz substrates in the wavelength range of 230–700 nm. (b) Plot of absorption coefficient versus photon energy, showing the optical band-gap energy of metallic and insulating ITOs. (c) Band diagram of the CF-embedded ITO.
Fig. 4
Fig. 4 Performance and light emission images of the lateral-type GaN LEDs with M-ITO and two I-ITOs before and after EBD; (a) Typical image of the fabricated GaN LEDs. (b) I-V characteristic curves measured for GaN LEDs with different TCEs. (c) Light output power versus injection current characteristics measured for GaN LEDs with different TCEs. (d) Microscopic light emission photographs measured from the surface of the three GaN LED chips at different injection currents. Relative light emission intensities are indicated by the color bar in the right-hand side of the light emission images.

Metrics