Abstract

We experimentally demonstrate trapping a microdroplet by using an optical tweezer and then activating it as a microresonator by bringing it close to a tapered-fiber coupler. Our tweezers facilitated the tuning of the coupling from the under-coupled to the critically-coupled regime while the quality-factor [Q] is 12 million and the resonator’s size is at the 80 μm scale.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rotational control within optical tweezers by use of a rotating aperture

Anna T. O’Neil and Miles J. Padgett
Opt. Lett. 27(9) 743-745 (2002)

Selective excitation of axial modes in a high-Q microcylindrical resonator for controlled and robust coupling

Xueying Jin, Yongchao Dong, and Keyi Wang
Appl. Opt. 54(27) 8100-8107 (2015)

Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides

Alexandr Jonáš, Yasin Karadag, Michael Mestre, and Alper Kiraz
J. Opt. Soc. Am. B 29(12) 3240-3247 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260(5105), 232–234 (1993).
    [Crossref] [PubMed]
  2. S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
    [Crossref] [PubMed]
  3. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
    [Crossref] [PubMed]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  5. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
    [Crossref]
  6. A. Terray, J. Oakey, and D. W. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
    [Crossref]
  7. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
    [Crossref] [PubMed]
  8. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
    [Crossref] [PubMed]
  9. J. P. Pantina and E. M. Furst, “Directed assembly and rupture mechanics of colloidal aggregates,” Langmuir 20(10), 3940–3946 (2004).
    [Crossref] [PubMed]
  10. A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Baine, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. (Camb.) 2006(43), 4515–4517 (2006).
    [Crossref] [PubMed]
  11. A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
    [Crossref] [PubMed]
  12. A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
    [Crossref]
  13. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9(11), 499–501 (1984).
    [Crossref] [PubMed]
  14. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
    [Crossref] [PubMed]
  15. A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. B 29(12), 3240–3247 (2012).
    [Crossref]
  16. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
    [Crossref]
  17. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref] [PubMed]
  18. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  19. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
    [Crossref] [PubMed]
  20. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  21. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [Crossref] [PubMed]
  22. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
    [Crossref]
  23. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
    [Crossref] [PubMed]
  24. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
    [Crossref] [PubMed]
  25. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
    [Crossref] [PubMed]
  26. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
    [Crossref] [PubMed]
  27. P. R. Cooper, “Refractive-index measurements of paraffin, a silicone elastomer, and an epoxy resin over the 500-1500-nm spectral range,” Appl. Opt. 21(19), 3413–3415 (1982).
    [Crossref] [PubMed]
  28. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999).
    [Crossref]
  29. B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett. 87(18), 181109 (2005).
    [Crossref]
  30. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
    [Crossref] [PubMed]
  31. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]

2013 (1)

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref] [PubMed]

2009 (3)

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

2008 (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

2007 (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

2006 (3)

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Baine, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. (Camb.) 2006(43), 4515–4517 (2006).
[Crossref] [PubMed]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
[Crossref] [PubMed]

2005 (1)

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett. 87(18), 181109 (2005).
[Crossref]

2004 (3)

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

J. P. Pantina and E. M. Furst, “Directed assembly and rupture mechanics of colloidal aggregates,” Langmuir 20(10), 3940–3946 (2004).
[Crossref] [PubMed]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

2002 (3)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

A. Terray, J. Oakey, and D. W. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[Crossref]

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

2001 (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

1999 (2)

1997 (1)

1993 (1)

S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260(5105), 232–234 (1993).
[Crossref] [PubMed]

1990 (1)

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

1984 (1)

1982 (1)

1977 (1)

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Bahl, G.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref] [PubMed]

Baine, C. D.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Baine, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. (Camb.) 2006(43), 4515–4517 (2006).
[Crossref] [PubMed]

Berry, M. G.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Baine, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. (Camb.) 2006(43), 4515–4517 (2006).
[Crossref] [PubMed]

Birks, T. A.

Block, S. M.

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Campbell, K.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Carmon, T.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Chang, R. K.

Cheung, G.

Cooper, P. R.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Dziedzic, J.

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Fainman, Y.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Fan, X.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Furst, E. M.

J. P. Pantina and E. M. Furst, “Directed assembly and rupture mechanics of colloidal aggregates,” Langmuir 20(10), 3940–3946 (2004).
[Crossref] [PubMed]

Goldstein, L. S.

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Gorodetsky, M. L.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Groisman, A.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref] [PubMed]

Haist, T.

Hossein-Zadeh, M.

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref] [PubMed]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999).
[Crossref]

Jacques, F.

Jonáš, A.

Karadag, Y.

Kim, K. H.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Kiraz, A.

Knight, J. C.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Kuo, S. C.

S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260(5105), 232–234 (1993).
[Crossref] [PubMed]

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Levy, U.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Liu, J.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Long, M. B.

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref] [PubMed]

Marr, D. W.

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

A. Terray, J. Oakey, and D. W. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[Crossref]

Matsko, A. B.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref] [PubMed]

Mellor, C. D.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Baine, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. (Camb.) 2006(43), 4515–4517 (2006).
[Crossref] [PubMed]

Mestre, M.

Min, B.

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett. 87(18), 181109 (2005).
[Crossref]

Mookherjea, S.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

Oakey, J.

A. Terray, J. Oakey, and D. W. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[Crossref]

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Pantina, J. P.

J. P. Pantina and E. M. Furst, “Directed assembly and rupture mechanics of colloidal aggregates,” Langmuir 20(10), 3940–3946 (2004).
[Crossref] [PubMed]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Reicherter, M.

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref] [PubMed]

Schnapp, B. J.

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Seidel, D.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref] [PubMed]

Sheetz, M. P.

S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260(5105), 232–234 (1993).
[Crossref] [PubMed]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Terray, A.

A. Terray, J. Oakey, and D. W. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[Crossref]

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

Tiziani, H. J.

Tomes, M.

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

Tzeng, H.-M.

Vahala, K.

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett. 87(18), 181109 (2005).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wagemann, E. U.

Wall, K. F.

Ward, A. D.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Baine, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. (Camb.) 2006(43), 4515–4517 (2006).
[Crossref] [PubMed]

Yang, L.

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett. 87(18), 181109 (2005).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Zehnpfennig, J.

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

B. Min, L. Yang, and K. Vahala, “Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities,” Appl. Phys. Lett. 87(18), 181109 (2005).
[Crossref]

A. Terray, J. Oakey, and D. W. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[Crossref]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Chem. Commun. (Camb.) (1)

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Baine, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. (Camb.) 2006(43), 4515–4517 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Langmuir (1)

J. P. Pantina and E. M. Furst, “Directed assembly and rupture mechanics of colloidal aggregates,” Langmuir 20(10), 3940–3946 (2004).
[Crossref] [PubMed]

Nat. Commun. (2)

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011).
[Crossref] [PubMed]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref] [PubMed]

Nat. Methods (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

Nat. Phys. (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (7)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

A. Ashkin and J. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102(11), 113601 (2009).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Optomechanics with surface-acoustic-wave whispering-gallery modes,” Phys. Rev. Lett. 103(25), 257403 (2009).
[Crossref] [PubMed]

Science (3)

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260(5105), 232–234 (1993).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup (A) where light is coupled from a tapered fiber to circumferentially circulate into a microdroplet resonator. (B) A micrograph of our experiment. The dashed green circle represents the location of the optical tweezers that hold the droplet. The focuses in the micrograph were optimized separately (for the taper and for the drop).
Fig. 2
Fig. 2 Experimental results: The optical quality factor, Q, is experimentally measured by (a) trapping a microsphere and bringing it near the evanescent field of the tapered fiber. When in the undercoupled regime, a Lorenzian drop in transmission is monitored with a linwidth that reveals a 12-million Q. While at resonance, the mode is seen via residual scatterings (c) that are not seen while off resonance (b).
Fig. 3
Fig. 3 Experimental results: resonances spectrum with several modes. To check that these modes are repeatable, we scan while increasing wavelength (red) and then while decreasing wavelength (blue) and verify that resonances indeed stay. The green arrows indicates the free spectral range.
Fig. 4
Fig. 4 Experimental results, tunable coupling from the undercoupled regime (a) to the critically coupled regime (b). During this measurement, the resonator is first trapped relatively far from the taper (a) and then brought closer to it (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FSR= λ 2 2πR n eff ,

Metrics