Abstract

A photonic crystal fiber selectively filled with silver nanoparticles dispersed in polydimethylsiloxane has been numerically studied via finite elements analysis. These nanoparticles possess a localized surface plasmon resonance in the visible region which depends on the refractive index of the surrounding medium. The refractive index of polydimethylsiloxane can be thermally tuned leading to the design of polarization tunable filters. Filters found with this setup show anisotropic attenuation of the x-polarization fundamental mode around αx = 1200dB/cm remarkably higher than the y-polarization mode. Moreover, high fiber birefringence and birefringence reversal is observed in the spectral region of the plasmon.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications

Dora Juan Juan Hu and Ho Pui Ho
Adv. Opt. Photon. 9(2) 257-314 (2017)

Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method

Mohammad Al Mahfuz, Md. Rabiul Hasan, Moriom Rojy Momota, Al Masud, and Sanjida Akter
OSA Continuum 2(5) 1713-1725 (2019)

Surface plasmon resonance biosensor based on hexagonal lattice dual-core photonic crystal fiber

Tanvir Ahmed, Alok Kumar Paul, Md. Shamim Anower, and S. M. Abdur Razzak
Appl. Opt. 58(31) 8416-8422 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [Crossref] [PubMed]
  2. R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [Crossref] [PubMed]
  3. R. Bise, R. Windeler, K. Kranz, C. Kerbage, B. Eggleton, and D. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and ExhibitIEEE, OCF, 466–468 (2002).
    [Crossref]
  4. T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
    [Crossref]
  5. A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
    [Crossref] [PubMed]
  6. F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
    [Crossref]
  7. I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active poly (dimethylsiloxane) elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 453–458 (2006).
    [PubMed]
  8. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid pdms/silica photonic crystal fiber,” Opt. Express 18, 24344–24351 (2010).
    [Crossref] [PubMed]
  9. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  11. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  12. P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc., 2004).
    [Crossref]
  13. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  14. A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 7, 1–13 (2014).
  15. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
    [Crossref] [PubMed]
  16. R. Slavık, J. Homola, and J. Čtyroký, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sensor Actuat B-Chem 51, 311–315 (1998).
    [Crossref]
  17. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008).
    [Crossref] [PubMed]
  18. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974–5986 (2012).
    [Crossref] [PubMed]
  19. X. Zhang, R. Wang, F. Cox, B. Kuhlmey, and M. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007).
    [Crossref] [PubMed]
  20. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006).
    [Crossref] [PubMed]
  21. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
    [Crossref]
  22. Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
    [Crossref]
  23. N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
    [Crossref] [PubMed]
  24. J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett.,  26, 1092–1095 (2014).
    [Crossref]
  25. Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
    [Crossref]
  26. M. F. O. Hameed, A. Heikal, B. Younis, M. Abdelrazzak, and S. Obayya, “Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter,” Opt. Express 23, 7007–7020 (2015).
    [Crossref] [PubMed]
  27. R. Caputo, P. Giovanna, I. Melissa, and L. De Sio, “Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics,” Nanospectroscopy 1, 40–53 (2015).
    [Crossref]
  28. L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
    [Crossref] [PubMed]
  29. R. Caputo, L. De Sio, J Dintinger, H. Sellame, T. Scharf, and C.P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
    [Crossref]
  30. T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
    [Crossref]
  31. D. Poudereux, K. Mileńko, A. Dybko, J. M. Otón, and T. R. Woliński, “Polarization properties of polymer-based photonic crystal fibers,” Photonics Lett Pol 6, 59–61 (2014).
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  33. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).
    [Crossref] [PubMed]
  34. J. Algorri, B. Garcia-Camara, A. Garcia-Garcia, V. Urruchi, and J. Sanchez-Pena, “Fiber Optic Temperature Sensor Based On Amplitude Modulation of Metallic and Semiconductor Nanoparticles in a Liquid Crystal Mixture,” J. Lightwave Technol. 33, 2451–2455 (2015).
    [Crossref]
  35. X. Zheng, Y.G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23, 709–711 (2011).
    [Crossref]
  36. P. Kumar, C. Paul, A. Datta, and N. Pani, “Highly birefringent photonic crystal fiber with negative dispersion and its propagation,” in 2014 International Conference on Information Communication and Embedded Systems (IEEE,2014), pp.1–6.
  37. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-ir region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
    [Crossref] [PubMed]
  38. B. García-Cámara, R. Gómez-Medina, J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21, 23007–23020 (2013).
    [Crossref] [PubMed]
  39. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
    [Crossref]

2015 (6)

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

R. Caputo, P. Giovanna, I. Melissa, and L. De Sio, “Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics,” Nanospectroscopy 1, 40–53 (2015).
[Crossref]

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

M. F. O. Hameed, A. Heikal, B. Younis, M. Abdelrazzak, and S. Obayya, “Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter,” Opt. Express 23, 7007–7020 (2015).
[Crossref] [PubMed]

J. Algorri, B. Garcia-Camara, A. Garcia-Garcia, V. Urruchi, and J. Sanchez-Pena, “Fiber Optic Temperature Sensor Based On Amplitude Modulation of Metallic and Semiconductor Nanoparticles in a Liquid Crystal Mixture,” J. Lightwave Technol. 33, 2451–2455 (2015).
[Crossref]

2014 (4)

D. Poudereux, K. Mileńko, A. Dybko, J. M. Otón, and T. R. Woliński, “Polarization properties of polymer-based photonic crystal fibers,” Photonics Lett Pol 6, 59–61 (2014).

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref] [PubMed]

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett.,  26, 1092–1095 (2014).
[Crossref]

A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 7, 1–13 (2014).

2013 (1)

2012 (3)

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974–5986 (2012).
[Crossref] [PubMed]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).
[Crossref] [PubMed]

R. Caputo, L. De Sio, J Dintinger, H. Sellame, T. Scharf, and C.P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[Crossref]

2011 (2)

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

X. Zheng, Y.G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23, 709–711 (2011).
[Crossref]

2010 (2)

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid pdms/silica photonic crystal fiber,” Opt. Express 18, 24344–24351 (2010).
[Crossref] [PubMed]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

2009 (1)

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-ir region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (2)

2006 (4)

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006).
[Crossref] [PubMed]

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active poly (dimethylsiloxane) elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 453–458 (2006).
[PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

2005 (1)

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

2004 (1)

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

2000 (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

1999 (1)

R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

1998 (1)

R. Slavık, J. Homola, and J. Čtyroký, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sensor Actuat B-Chem 51, 311–315 (1998).
[Crossref]

1996 (1)

Abdelrazzak, M.

Adam, P.M.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Agostiano, A.

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

Ahmadivand, A.

A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 7, 1–13 (2014).

Ahn, C.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Algorri, J.

Allan, D.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Atkin, D. M.

Bilhaut, L.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Birks, T.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Birks, T. A.

Bise, R.

R. Bise, R. Windeler, K. Kranz, C. Kerbage, B. Eggleton, and D. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and ExhibitIEEE, OCF, 466–468 (2002).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

Bürgi, T.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Caputo, R.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

R. Caputo, P. Giovanna, I. Melissa, and L. De Sio, “Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics,” Nanospectroscopy 1, 40–53 (2015).
[Crossref]

R. Caputo, L. De Sio, J Dintinger, H. Sellame, T. Scharf, and C.P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[Crossref]

Cataldi, U.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Chen, H.

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

Comparelli, R.

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

Cox, F.

Cregan, R.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Ctyroký, J.

R. Slavık, J. Homola, and J. Čtyroký, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sensor Actuat B-Chem 51, 311–315 (1998).
[Crossref]

Curri, M.L.

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

Dabrowski, R.

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

Dash, J. N.

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett.,  26, 1092–1095 (2014).
[Crossref]

Datta, A.

P. Kumar, C. Paul, A. Datta, and N. Pani, “Highly birefringent photonic crystal fiber with negative dispersion and its propagation,” in 2014 International Conference on Information Communication and Embedded Systems (IEEE,2014), pp.1–6.

De Sio, L.

R. Caputo, P. Giovanna, I. Melissa, and L. De Sio, “Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics,” Nanospectroscopy 1, 40–53 (2015).
[Crossref]

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

R. Caputo, L. De Sio, J Dintinger, H. Sellame, T. Scharf, and C.P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[Crossref]

Dintinger, J

R. Caputo, L. De Sio, J Dintinger, H. Sellame, T. Scharf, and C.P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).
[Crossref] [PubMed]

Domanski, A.

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

Dybko, A.

D. Poudereux, K. Mileńko, A. Dybko, J. M. Otón, and T. R. Woliński, “Polarization properties of polymer-based photonic crystal fibers,” Photonics Lett Pol 6, 59–61 (2014).

Eggleton, B.

R. Bise, R. Windeler, K. Kranz, C. Kerbage, B. Eggleton, and D. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and ExhibitIEEE, OCF, 466–468 (2002).
[Crossref]

Ertman, S.

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

Fan, Z.

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

Garcia-Camara, B.

García-Cámara, B.

Garcia-Garcia, A.

Gaur, A.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Geil, P.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Giovanna, P.

R. Caputo, P. Giovanna, I. Melissa, and L. De Sio, “Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics,” Nanospectroscopy 1, 40–53 (2015).
[Crossref]

Golmohammadi, S.

A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 7, 1–13 (2014).

Gómez-Medina, R.

Gontier, A.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Hameed, M. F. O.

Han, T.

X. Zheng, Y.G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23, 709–711 (2011).
[Crossref]

Hassani, A.

Hautakorpi, M.

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Heikal, A.

Heineman, W. R.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref] [PubMed]

R. Slavık, J. Homola, and J. Čtyroký, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sensor Actuat B-Chem 51, 311–315 (1998).
[Crossref]

Hua, F.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Jha, R.

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett.,  26, 1092–1095 (2014).
[Crossref]

Kakarantzas, G.

Kanehara, M.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-ir region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref] [PubMed]

Kerbage, C.

R. Bise, R. Windeler, K. Kranz, C. Kerbage, B. Eggleton, and D. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and ExhibitIEEE, OCF, 466–468 (2002).
[Crossref]

Kickelbick, G.

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active poly (dimethylsiloxane) elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 453–458 (2006).
[PubMed]

Knight, J.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Knight, J. C.

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).
[Crossref] [PubMed]

Koike, H.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-ir region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref] [PubMed]

Kranz, K.

R. Bise, R. Windeler, K. Kranz, C. Kerbage, B. Eggleton, and D. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and ExhibitIEEE, OCF, 466–468 (2002).
[Crossref]

Kuhlmey, B.

Kumar, P.

P. Kumar, C. Paul, A. Datta, and N. Pani, “Highly birefringent photonic crystal fiber with negative dispersion and its propagation,” in 2014 International Conference on Information Communication and Embedded Systems (IEEE,2014), pp.1–6.

Large, M.

Lee, S. H.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Lesiak, P.

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

Lévêque, G.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Leviatan, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Li, C.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Li, J.

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

Li, S.

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

Limbach, P. A.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Liu, D.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974–5986 (2012).
[Crossref] [PubMed]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

Liu, H.

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

Liu, Q.

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

Liu, Y.G.

X. Zheng, Y.G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23, 709–711 (2011).
[Crossref]

Liz-Marzán, L. M.

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active poly (dimethylsiloxane) elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 453–458 (2006).
[PubMed]

Lu, Y.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref] [PubMed]

Luan, N.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref] [PubMed]

Ludvigsen, H.

Lv, W.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref] [PubMed]

Macias, D.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Madi, Y.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Mangan, B.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Marae-Djouda, J.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Markos, C.

Mattinen, M.

Maurer, T.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Meitl, M. A.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Melissa, I.

R. Caputo, P. Giovanna, I. Melissa, and L. De Sio, “Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics,” Nanospectroscopy 1, 40–53 (2015).
[Crossref]

Milenko, K.

D. Poudereux, K. Mileńko, A. Dybko, J. M. Otón, and T. R. Woliński, “Polarization properties of polymer-based photonic crystal fibers,” Photonics Lett Pol 6, 59–61 (2014).

Montay, G.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Nikcevic, I.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Nowinowski-Kruszelnicki, E.

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

Obayya, S.

Otón, J. M.

D. Poudereux, K. Mileńko, A. Dybko, J. M. Otón, and T. R. Woliński, “Polarization properties of polymer-based photonic crystal fibers,” Photonics Lett Pol 6, 59–61 (2014).

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Palermo, G.

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

Pan, S.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Pani, N.

P. Kumar, C. Paul, A. Datta, and N. Pani, “Highly birefringent photonic crystal fiber with negative dispersion and its propagation,” in 2014 International Conference on Information Communication and Embedded Systems (IEEE,2014), pp.1–6.

Panicaud, B.

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

Pastoriza-Santos, I.

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active poly (dimethylsiloxane) elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 453–458 (2006).
[PubMed]

Paul, C.

P. Kumar, C. Paul, A. Datta, and N. Pani, “Highly birefringent photonic crystal fiber with negative dispersion and its propagation,” in 2014 International Conference on Information Communication and Embedded Systems (IEEE,2014), pp.1–6.

Pérez-Juste, J.

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active poly (dimethylsiloxane) elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 453–458 (2006).
[PubMed]

Pezzi, L.

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

Piruska, A.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Placido, T.

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

Poudereux, D.

D. Poudereux, K. Mileńko, A. Dybko, J. M. Otón, and T. R. Woliński, “Polarization properties of polymer-based photonic crystal fibers,” Photonics Lett Pol 6, 59–61 (2014).

Prasad, P. N.

P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc., 2004).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

Roberts, P.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Rogers, J. A.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Rotkina, L.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Russell, P. S. J.

R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P. St. J.

Sáenz, J.

Sanchez-Pena, J.

Scharf, T.

R. Caputo, L. De Sio, J Dintinger, H. Sellame, T. Scharf, and C.P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[Crossref]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).
[Crossref] [PubMed]

Seliskar, C. J.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Sellame, H.

R. Caputo, L. De Sio, J Dintinger, H. Sellame, T. Scharf, and C.P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[Crossref]

Sepúlveda, B.

Shim, M.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Shuai, B.

Shum, P.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Skorobogatiy, M.

Slavik, R.

R. Slavık, J. Homola, and J. Čtyroký, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sensor Actuat B-Chem 51, 311–315 (1998).
[Crossref]

Sun, Y.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Szaniawska, K.

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

Tabiryan, N.

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

Tai, B.

X. Zheng, Y.G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23, 709–711 (2011).
[Crossref]

Teranishi, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-ir region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref] [PubMed]

Trevor, D.

R. Bise, R. Windeler, K. Kranz, C. Kerbage, B. Eggleton, and D. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and ExhibitIEEE, OCF, 466–468 (2002).
[Crossref]

Umeton, C.P.

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

R. Caputo, L. De Sio, J Dintinger, H. Sellame, T. Scharf, and C.P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[Crossref]

Urruchi, V.

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Veltri, A.

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

Vlachos, K.

Wang, J.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Wang, R.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref] [PubMed]

X. Zhang, R. Wang, F. Cox, B. Kuhlmey, and M. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007).
[Crossref] [PubMed]

Wang, Z.

X. Zheng, Y.G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23, 709–711 (2011).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Windeler, R.

R. Bise, R. Windeler, K. Kranz, C. Kerbage, B. Eggleton, and D. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and ExhibitIEEE, OCF, 466–468 (2002).
[Crossref]

Wojcik, J.

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

Wolinski, T.

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

Wolinski, T. R.

D. Poudereux, K. Mileńko, A. Dybko, J. M. Otón, and T. R. Woliński, “Polarization properties of polymer-based photonic crystal fibers,” Photonics Lett Pol 6, 59–61 (2014).

Xia, L.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974–5986 (2012).
[Crossref] [PubMed]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

Yan, M.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Yao, J.

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref] [PubMed]

Yoshinaga, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-ir region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref] [PubMed]

Younis, B.

Yu, X.

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Zhang, X.

Zhang, Y.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20, 5974–5986 (2012).
[Crossref] [PubMed]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

Zheng, X.

X. Zheng, Y.G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23, 709–711 (2011).
[Crossref]

Zhou, C.

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Phys. Express (1)

Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, “High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film,” Appl. Phys. Express 8, 046701 (2015).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref] [PubMed]

Front. Mater. Sci. (1)

T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.M. Adam, G. Lévêque, T. Bürgi, and R. Caputo, “The beginnings of plasmomechanics: towards plasmonic strain sensors,” Front. Mater. Sci. 9, 170–177 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photon. Technol. Lett.,  26, 1092–1095 (2014).
[Crossref]

X. Zheng, Y.G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photon. Technol. Lett. 23, 709–711 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-ir region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Nanopart. Res. (1)

A. Ahmadivand and S. Golmohammadi, “Optimized plasmonic configurations: adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes,” J. Nanopart. Res. 7, 1–13 (2014).

J. Nanosci. Nanotechnol. (1)

I. Pastoriza-Santos, J. Pérez-Juste, G. Kickelbick, and L. M. Liz-Marzán, “Optically active poly (dimethylsiloxane) elastomer films through doping with gold nanoparticles,” J. Nanosci. Nanotechnol. 6, 453–458 (2006).
[PubMed]

J. Opt. (1)

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12, 015005 (2010).
[Crossref]

J. Phys. Chem. B (1)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10549–10556 (2000).
[Crossref]

Lab Chip (1)

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5, 1348–1354 (2005).
[Crossref] [PubMed]

Meas Sci Technol (1)

T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas Sci Technol 17, 985–991 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

R. Caputo, L. De Sio, J Dintinger, H. Sellame, T. Scharf, and C.P. Umeton, “Realization and characterization of POLICRYPS-like structures including metallic subentities,” Mol. Cryst. Liq. Cryst. 553, 111–117 (2012).
[Crossref]

Nano Lett. (1)

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4, 2467–2471 (2004).
[Crossref]

Nanospectroscopy (1)

R. Caputo, P. Giovanna, I. Melissa, and L. De Sio, “Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics,” Nanospectroscopy 1, 40–53 (2015).
[Crossref]

Nature (1)

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, and Y. Zhang, “Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range,” Opt. Commun. 284, 4161–4166 (2011).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Photonics Lett Pol (1)

D. Poudereux, K. Mileńko, A. Dybko, J. M. Otón, and T. R. Woliński, “Polarization properties of polymer-based photonic crystal fibers,” Photonics Lett Pol 6, 59–61 (2014).

Phys. Chem. Chem. Phys. (1)

L. Pezzi, L. De Sio, A. Veltri, T. Placido, G. Palermo, R. Comparelli, M.L. Curri, A. Agostiano, N. Tabiryan, and C.P. Umeton, “Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals,” Phys. Chem. Chem. Phys. 17, 20281–20287 (2015).
[Crossref] [PubMed]

Science (2)

R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Sensor Actuat B-Chem (1)

R. Slavık, J. Homola, and J. Čtyroký, “Miniaturization of fiber optic surface plasmon resonance sensor,” Sensor Actuat B-Chem 51, 311–315 (1998).
[Crossref]

Sensors (1)

N. Luan, R. Wang, W. Lv, Y. Lu, and J. Yao, “Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires,” Sensors 14, 16035–16045 (2014).
[Crossref] [PubMed]

Other (6)

R. Bise, R. Windeler, K. Kranz, C. Kerbage, B. Eggleton, and D. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and ExhibitIEEE, OCF, 466–468 (2002).
[Crossref]

P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc., 2004).
[Crossref]

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

P. Kumar, C. Paul, A. Datta, and N. Pani, “Highly birefringent photonic crystal fiber with negative dispersion and its propagation,” in 2014 International Conference on Information Communication and Embedded Systems (IEEE,2014), pp.1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Real and imaginary parts of the effective refractive index of PDMS with (and without) nanoparticles of 5 nm, 40 nm and 80 nm at −10°C and 80°C in the region of the AgNP LSPR.
Fig. 2
Fig. 2 Left: SEM image of PCF 1550-01, the asymmetry in the periodicity preserves the state of polarization. Right: geometric structure of the fiber, green holes are infiltrated with PDMS + AgNPs and external blue layer is the modeled PML boundary condition.
Fig. 3
Fig. 3 x- and y-polarizations of the fundamental mode far (420 nm) and near the plasmon resonance (at 441.5 nm) of a PM-1550 selectively filled with PDMS doped with AgNP of 80 nm, 0.05 %v/v at 0°C.
Fig. 4
Fig. 4 Comparison of the effective refractive index, both real (left) and imaginary (right) parts, as a function of the Ag NP size and for both polarizations.
Fig. 5
Fig. 5 Comparison of the birefringence of the system considering different sizes (particle diameter) of the AgNPs (5, 40 and 80 nm) at 0°C.
Fig. 6
Fig. 6 Comparison of the effective refractive index, both real (upper panel) and imaginary (bottom panel) for both polarizations considering AgNPs of 40 nm (diameter) and temperatures of 0°C and 80°C.
Fig. 7
Fig. 7 Attenuation per cm of AgNP in 5, 40 and 80nm at 0°C of the x- and y-polarization of the fundamental mode.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε a ν = ε m [ 1 + 3 f ( ε ε m ) / ( ε + 2 ε m ) 1 f ( ε ε m ) / ( ε + 2 ε m ) ]
ε ( ω ) = ε ω p 2 ω 2 i γ ω
B = λ 2 π ( β y β x ) = Re ( n eff y ) Re ( n eff x )

Metrics