Abstract

The realization of high refractive index is of significant interest in optical imaging with enhanced resolution. Strongly coupled subwavelength resonators were proposed and demonstrated at both optical and terahertz frequencies to enhance the refractive index due to large induced dipole moment in meta-atoms. Here, we report an alternative design for flexible free-standing terahertz metasurface in the strong coupling regime where we experimentally achieve a peak refractive index value of 14.36. We also investigate the impact of the nearest neighbor coupling in the form of frequency tuning and enhancement of the peak refractive index. We provide an analytical circuit model to explain the impact of geometrical parameters and coupling on the effective refractive index of the metasurface. The proposed meta-atom structure enables tailoring of the peak refractive index based on nearest neighbor coupling and this property offers tremendous design flexibility for transformation optics and other index-gradient devices at terahertz frequencies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent metamaterial with broad ultrahigh refractive index in terahertz region

Zhengxian Liu, Chen Zhang, Shang Sun, Ningbo Yi, Yisheng Gao, Qinghai Song, and Shumin Xiao
Opt. Mater. Express 5(9) 1949-1953 (2015)

Next-nearest-neighbor resonance coupling and exceptional singularities in degenerate optical microcavities

Arnab Laha, Abhijit Biswas, and Somnath Ghosh
J. Opt. Soc. Am. B 34(10) 2050-2058 (2017)

Manipulation of dual band ultrahigh index metamaterials in the terahertz region

Xufeng Jing, Weimin Wang, Rui Xia, Jingyin Zhao, Ying Tian, and Zhi Hong
Appl. Opt. 55(31) 8743-8751 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13(13), 4922–4930 (2005).
    [Crossref] [PubMed]
  3. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
    [Crossref] [PubMed]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  5. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  6. P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
    [Crossref]
  7. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
    [Crossref] [PubMed]
  8. X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
    [Crossref]
  9. J. Shin, J.-T. Shen, and S. Fan, “Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
    [Crossref] [PubMed]
  10. H. Shi, Y. Lu, X. Wei, X. Dong, and C. Du, “Characterization for metamaterials with a high refractive index formed by periodic stratified metallic wires array,” Appl. Phys., A Mater. Sci. Process. 97(4), 799–803 (2009).
    [Crossref]
  11. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
    [Crossref] [PubMed]
  12. H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
    [Crossref]
  13. S.-G. Park, K. Lee, D. Han, J. Ahn, and K.-H. Jeong, “Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial,” Appl. Phys. Lett. 105(9), 091101 (2014).
    [Crossref]
  14. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  15. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  16. F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1, 78 (2011).
    [Crossref] [PubMed]
  17. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
    [Crossref] [PubMed]
  18. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
    [Crossref]
  19. Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express 19(24), 24411–24423 (2011).
    [Crossref] [PubMed]
  20. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
    [Crossref] [PubMed]
  21. J. Shin, J.-T. Shen, P. B. Catrysse, and S. Fan, “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1116–1122 (2006).
    [Crossref]
  22. X. Hu, C. T. Chan, J. Zi, M. Li, and K.-M. Ho, “Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
    [Crossref] [PubMed]
  23. B. Wood and J. B. Pendry, “Metamaterials at zero frequency,” J. Phys. Condens. Matter 19(7), 076208 (2007).
    [Crossref] [PubMed]
  24. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]
  25. A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31(5), 634–636 (2006).
    [Crossref] [PubMed]
  26. L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
    [Crossref]
  27. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  28. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
    [Crossref] [PubMed]
  29. A. Dhouibi, S. N. Burokur, A. Lustrac, and A. Priou, “Z-shaped meta-atom for negative permittivity metamaterials,” Appl. Phys. A 106(1), 47–51 (2012).
    [Crossref]
  30. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 065602 (2003).
    [Crossref] [PubMed]
  31. A. Dhouibi, S. N. Burokur, A. De Lustrac, and A. Priou, “Study and analysis of an electric Z-shaped meta-atom,” Adv. Electromag. 1(2), 64–70 (2012).
    [Crossref]
  32. X. Zhang, Q. Li, W. Cao, W. Yue, J. Gu, Z. Tian, J. Han, and W. Zhang, “Equivalent circuit analysis of terahertz metamaterial filters (Invited Paper),” Chin. Opt. Lett. 9(11), 110012 (2011).
    [Crossref]
  33. J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
    [Crossref] [PubMed]
  34. S. Gevorgian and H. Berg, “Line capacitance and impedance of coplanar-strip waveguides on substrates with multiple dielectric layers,” in European Microwave Conference (Nexus Media Limited, 2001), pp. 153–156.
  35. M. A. Bueno and A. K. T. Assis, “A new method for inductance calculations,” J. Phys. D Appl. Phys. 28(9), 1802–1806 (1995).
    [Crossref]

2014 (1)

S.-G. Park, K. Lee, D. Han, J. Ahn, and K.-H. Jeong, “Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial,” Appl. Phys. Lett. 105(9), 091101 (2014).
[Crossref]

2013 (3)

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

2012 (2)

A. Dhouibi, S. N. Burokur, A. De Lustrac, and A. Priou, “Study and analysis of an electric Z-shaped meta-atom,” Adv. Electromag. 1(2), 64–70 (2012).
[Crossref]

A. Dhouibi, S. N. Burokur, A. Lustrac, and A. Priou, “Z-shaped meta-atom for negative permittivity metamaterials,” Appl. Phys. A 106(1), 47–51 (2012).
[Crossref]

2011 (4)

X. Zhang, Q. Li, W. Cao, W. Yue, J. Gu, Z. Tian, J. Han, and W. Zhang, “Equivalent circuit analysis of terahertz metamaterial filters (Invited Paper),” Chin. Opt. Lett. 9(11), 110012 (2011).
[Crossref]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1, 78 (2011).
[Crossref] [PubMed]

Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express 19(24), 24411–24423 (2011).
[Crossref] [PubMed]

2010 (1)

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[Crossref]

2009 (4)

J. Shin, J.-T. Shen, and S. Fan, “Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

H. Shi, Y. Lu, X. Wei, X. Dong, and C. Du, “Characterization for metamaterials with a high refractive index formed by periodic stratified metallic wires array,” Appl. Phys., A Mater. Sci. Process. 97(4), 799–803 (2009).
[Crossref]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

2008 (2)

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

2007 (1)

B. Wood and J. B. Pendry, “Metamaterials at zero frequency,” J. Phys. Condens. Matter 19(7), 076208 (2007).
[Crossref] [PubMed]

2006 (4)

J. Shin, J.-T. Shen, P. B. Catrysse, and S. Fan, “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1116–1122 (2006).
[Crossref]

X. Hu, C. T. Chan, J. Zi, M. Li, and K.-M. Ho, “Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[Crossref] [PubMed]

A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31(5), 634–636 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (6)

P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30(1), 29–31 (2005).
[Crossref] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13(13), 4922–4930 (2005).
[Crossref] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

2003 (1)

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 065602 (2003).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1996 (1)

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

1995 (1)

M. A. Bueno and A. K. T. Assis, “A new method for inductance calculations,” J. Phys. D Appl. Phys. 28(9), 1802–1806 (1995).
[Crossref]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[Crossref]

Ahn, J.

S.-G. Park, K. Lee, D. Han, J. Ahn, and K.-H. Jeong, “Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial,” Appl. Phys. Lett. 105(9), 091101 (2014).
[Crossref]

Assis, A. K. T.

M. A. Bueno and A. K. T. Assis, “A new method for inductance calculations,” J. Phys. D Appl. Phys. 28(9), 1802–1806 (1995).
[Crossref]

Azad, A. K.

Bao, Y.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1, 78 (2011).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Beigang, R.

Belov, P. A.

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

Brueck, S. R.

Bueno, M. A.

M. A. Bueno and A. K. T. Assis, “A new method for inductance calculations,” J. Phys. D Appl. Phys. 28(9), 1802–1806 (1995).
[Crossref]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Burokur, S. N.

A. Dhouibi, S. N. Burokur, A. De Lustrac, and A. Priou, “Study and analysis of an electric Z-shaped meta-atom,” Adv. Electromag. 1(2), 64–70 (2012).
[Crossref]

A. Dhouibi, S. N. Burokur, A. Lustrac, and A. Priou, “Z-shaped meta-atom for negative permittivity metamaterials,” Appl. Phys. A 106(1), 47–51 (2012).
[Crossref]

Byun, D.

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

Cao, W.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1, 78 (2011).
[Crossref] [PubMed]

X. Zhang, Q. Li, W. Cao, W. Yue, J. Gu, Z. Tian, J. Han, and W. Zhang, “Equivalent circuit analysis of terahertz metamaterial filters (Invited Paper),” Chin. Opt. Lett. 9(11), 110012 (2011).
[Crossref]

Catrysse, P. B.

J. Shin, J.-T. Shen, P. B. Catrysse, and S. Fan, “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1116–1122 (2006).
[Crossref]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Chan, C. T.

X. Hu, C. T. Chan, J. Zi, M. Li, and K.-M. Ho, “Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[Crossref] [PubMed]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Choi, C.

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

Choi, M.

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Coutaz, J. L.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dai, J.

Dat Nguyen, V.

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

De Lustrac, A.

A. Dhouibi, S. N. Burokur, A. De Lustrac, and A. Priou, “Study and analysis of an electric Z-shaped meta-atom,” Adv. Electromag. 1(2), 64–70 (2012).
[Crossref]

Dhouibi, A.

A. Dhouibi, S. N. Burokur, A. De Lustrac, and A. Priou, “Study and analysis of an electric Z-shaped meta-atom,” Adv. Electromag. 1(2), 64–70 (2012).
[Crossref]

A. Dhouibi, S. N. Burokur, A. Lustrac, and A. Priou, “Z-shaped meta-atom for negative permittivity metamaterials,” Appl. Phys. A 106(1), 47–51 (2012).
[Crossref]

Dian Prasetyo, F.

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

Dong, X.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[Crossref]

H. Shi, Y. Lu, X. Wei, X. Dong, and C. Du, “Characterization for metamaterials with a high refractive index formed by periodic stratified metallic wires array,” Appl. Phys., A Mater. Sci. Process. 97(4), 799–803 (2009).
[Crossref]

Du, C.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[Crossref]

H. Shi, Y. Lu, X. Wei, X. Dong, and C. Du, “Characterization for metamaterials with a high refractive index formed by periodic stratified metallic wires array,” Appl. Phys., A Mater. Sci. Process. 97(4), 799–803 (2009).
[Crossref]

Duvillaret, L.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Engheta, N.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Fan, S.

J. Shin, J.-T. Shen, and S. Fan, “Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

J. Shin, J.-T. Shen, P. B. Catrysse, and S. Fan, “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1116–1122 (2006).
[Crossref]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Fan, W.

Filonov, D. S.

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

Fischer, B. M.

Garet, F.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Gu, J.

Han, D.

S.-G. Park, K. Lee, D. Han, J. Ahn, and K.-H. Jeong, “Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial,” Appl. Phys. Lett. 105(9), 091101 (2014).
[Crossref]

Han, J.

Ho, K.-M.

X. Hu, C. T. Chan, J. Zi, M. Li, and K.-M. Ho, “Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[Crossref] [PubMed]

Hu, X.

X. Hu, C. T. Chan, J. Zi, M. Li, and K.-M. Ho, “Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[Crossref] [PubMed]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Imhof, C.

Jeong, K.-H.

S.-G. Park, K. Lee, D. Han, J. Ahn, and K.-H. Jeong, “Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial,” Appl. Phys. Lett. 105(9), 091101 (2014).
[Crossref]

Jepsen, P. U.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Jokerst, N. M.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, K. Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kapitanova, P. V.

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Kino, G. S.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[Crossref]

Kivshar, Y. S.

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 065602 (2003).
[Crossref] [PubMed]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lapine, M.

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

Larouche, S.

Lee, K.

S.-G. Park, K. Lee, D. Han, J. Ahn, and K.-H. Jeong, “Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial,” Appl. Phys. Lett. 105(9), 091101 (2014).
[Crossref]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Lee, Y. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Li, M.

X. Hu, C. T. Chan, J. Zi, M. Li, and K.-M. Ho, “Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[Crossref] [PubMed]

Li, Q.

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Lipworth, G.

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Lu, X.

Lu, Y.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[Crossref]

H. Shi, Y. Lu, X. Wei, X. Dong, and C. Du, “Characterization for metamaterials with a high refractive index formed by periodic stratified metallic wires array,” Appl. Phys., A Mater. Sci. Process. 97(4), 799–803 (2009).
[Crossref]

Lustrac, A.

A. Dhouibi, S. N. Burokur, A. Lustrac, and A. Priou, “Z-shaped meta-atom for negative permittivity metamaterials,” Appl. Phys. A 106(1), 47–51 (2012).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Malloy, K. J.

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[Crossref]

Markoš, P.

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 065602 (2003).
[Crossref] [PubMed]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Osgood, R. M.

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Panoiu, N. C.

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Park, S.-G.

S.-G. Park, K. Lee, D. Han, J. Ahn, and K.-H. Jeong, “Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial,” Appl. Phys. Lett. 105(9), 091101 (2014).
[Crossref]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Paul, O.

Pendry, J. B.

B. Wood and J. B. Pendry, “Metamaterials at zero frequency,” J. Phys. Condens. Matter 19(7), 076208 (2007).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Pradhipta Tenggara, A.

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

Priou, A.

A. Dhouibi, S. N. Burokur, A. De Lustrac, and A. Priou, “Study and analysis of an electric Z-shaped meta-atom,” Adv. Electromag. 1(2), 64–70 (2012).
[Crossref]

A. Dhouibi, S. N. Burokur, A. Lustrac, and A. Priou, “Z-shaped meta-atom for negative permittivity metamaterials,” Appl. Phys. A 106(1), 47–51 (2012).
[Crossref]

Reinhard, B.

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Shen, J.-T.

J. Shin, J.-T. Shen, and S. Fan, “Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

J. Shin, J.-T. Shen, P. B. Catrysse, and S. Fan, “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1116–1122 (2006).
[Crossref]

Shi, H.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[Crossref]

H. Shi, Y. Lu, X. Wei, X. Dong, and C. Du, “Characterization for metamaterials with a high refractive index formed by periodic stratified metallic wires array,” Appl. Phys., A Mater. Sci. Process. 97(4), 799–803 (2009).
[Crossref]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

J. Shin, J.-T. Shen, and S. Fan, “Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

J. Shin, J.-T. Shen, P. B. Catrysse, and S. Fan, “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1116–1122 (2006).
[Crossref]

Simovski, C. R.

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

Singh, R.

Slobozhanyuk, A. P.

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

Smith, D. R.

Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express 19(24), 24411–24423 (2011).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 065602 (2003).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 065602 (2003).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stuart, C. T.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1, 78 (2011).
[Crossref] [PubMed]

Sun, C.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1, 78 (2011).
[Crossref] [PubMed]

Teguh Yudistira, H.

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

Teun Kim, T.

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

Tian, Z.

Tsai, Y.-J.

Tyler, T.

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Wegener, M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Wei, X.

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[Crossref]

H. Shi, Y. Lu, X. Wei, X. Dong, and C. Du, “Characterization for metamaterials with a high refractive index formed by periodic stratified metallic wires array,” Appl. Phys., A Mater. Sci. Process. 97(4), 799–803 (2009).
[Crossref]

Wood, B.

B. Wood and J. B. Pendry, “Metamaterials at zero frequency,” J. Phys. Condens. Matter 19(7), 076208 (2007).
[Crossref] [PubMed]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Xing, Q.

Yagupov, I. V.

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

Yue, W.

Zengerle, R.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13(13), 4922–4930 (2005).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.

X. Zhang, Q. Li, W. Cao, W. Yue, J. Gu, Z. Tian, J. Han, and W. Zhang, “Equivalent circuit analysis of terahertz metamaterial filters (Invited Paper),” Chin. Opt. Lett. 9(11), 110012 (2011).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhou, F.

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1, 78 (2011).
[Crossref] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Zi, J.

X. Hu, C. T. Chan, J. Zi, M. Li, and K.-M. Ho, “Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[Crossref] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Adv. Electromag. (1)

A. Dhouibi, S. N. Burokur, A. De Lustrac, and A. Priou, “Study and analysis of an electric Z-shaped meta-atom,” Adv. Electromag. 1(2), 64–70 (2012).
[Crossref]

Appl. Phys. A (1)

A. Dhouibi, S. N. Burokur, A. Lustrac, and A. Priou, “Z-shaped meta-atom for negative permittivity metamaterials,” Appl. Phys. A 106(1), 47–51 (2012).
[Crossref]

Appl. Phys. Lett. (5)

P. A. Belov, A. P. Slobozhanyuk, D. S. Filonov, I. V. Yagupov, P. V. Kapitanova, C. R. Simovski, M. Lapine, and Y. S. Kivshar, “Broadband isotropic μ-near-zero metamaterials,” Appl. Phys. Lett. 103(21), 211903 (2013).
[Crossref]

X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett. 97(1), 011904 (2010).
[Crossref]

H. Teguh Yudistira, A. Pradhipta Tenggara, V. Dat Nguyen, T. Teun Kim, F. Dian Prasetyo, C. Choi, M. Choi, and D. Byun, “Fabrication of terahertz metamaterial with high refractive index using high-resolution electrohydrodynamic jet printing,” Appl. Phys. Lett. 103(21), 211106 (2013).
[Crossref]

S.-G. Park, K. Lee, D. Han, J. Ahn, and K.-H. Jeong, “Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial,” Appl. Phys. Lett. 105(9), 091101 (2014).
[Crossref]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

H. Shi, Y. Lu, X. Wei, X. Dong, and C. Du, “Characterization for metamaterials with a high refractive index formed by periodic stratified metallic wires array,” Appl. Phys., A Mater. Sci. Process. 97(4), 799–803 (2009).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

J. Shin, J.-T. Shen, P. B. Catrysse, and S. Fan, “Cut-through metal slit array as an anisotropic metamaterial film,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1116–1122 (2006).
[Crossref]

J. Phys. Condens. Matter (1)

B. Wood and J. B. Pendry, “Metamaterials at zero frequency,” J. Phys. Condens. Matter 19(7), 076208 (2007).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

M. A. Bueno and A. K. T. Assis, “A new method for inductance calculations,” J. Phys. D Appl. Phys. 28(9), 1802–1806 (1995).
[Crossref]

Nat. Photonics (1)

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Nature (2)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470(7334), 369–373 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 065602 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

J. Shin, J.-T. Shen, and S. Fan, “Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth,” Phys. Rev. Lett. 102(9), 093903 (2009).
[Crossref] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

X. Hu, C. T. Chan, J. Zi, M. Li, and K.-M. Ho, “Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies,” Phys. Rev. Lett. 96(22), 223901 (2006).
[Crossref] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Zhou, Y. Bao, W. Cao, C. T. Stuart, J. Gu, W. Zhang, and C. Sun, “Hiding a Realistic Object Using a Broadband Terahertz Invisibility Cloak,” Sci. Rep. 1, 78 (2011).
[Crossref] [PubMed]

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Other (1)

S. Gevorgian and H. Berg, “Line capacitance and impedance of coplanar-strip waveguides on substrates with multiple dielectric layers,” in European Microwave Conference (Nexus Media Limited, 2001), pp. 153–156.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A unit cell of the proposed metamaterial consists of a thin Z-shaped aluminum patch symmetrically embedded in the polyimide dielectric substrate. The relevant geometrical dimensions are: p = 80 μm, a = 76 μm, c = 4.04 μm, w = 6 μm and d = 20 μm. (b) Microscopic images of the fabricated sample. (c) Photograph of a flexibility test for the fabricated metamaterials.
Fig. 2
Fig. 2 (a) Measured (red solid dots) and back-substituted (blue solid line) amplitude transmission spectra; (b) Simulated S21 (black solid line) and S11 (magenta solid line); (c) Experimentally extracted complex refractive index; (d) Numerically retrieved values from the simulated S-parameters.
Fig. 3
Fig. 3 Simulated distributions of the (a) electric field (b) magnetic field on the cut plane of z = 0 (which cuts through the center of the 200 nm metallic patch) at the resonance frequency of 0.333 THz. (c) and (d) numerically obtained values of the effective permittivity and permeability from the S-parameters retrieval method.
Fig. 4
Fig. 4 (a) Measured amplitude transmission spectra of the Z-shaped samples with different gap widths. (b) Corresponding refractive indices from the experiment (symbols) and from the numerical calculation (dash lines). Inset: numerically obtained values of the effective permittivity versus frequency for four gap widths.
Fig. 5
Fig. 5 (a) and (b) A comparison of the surface current distribution of Z-shaped and I-shaped resonators. (c) Equivalent circuit model of the Z-shaped metamaterials with L1: the self-inductance of two parallel metallic arms and M1: the mutual-inductance between them; L2: the self-inductance of the central microstrip; C1: the capacitance between the proximity units; C2: the lateral capacitance between two arms inside a unit cell. (d) Measured (red dots) and calculated (solid blue line) resonance frequency of the circuit model as a function of the gap width g.

Tables (1)

Tables Icon

Table 1 Circuit Component Parameters in the Equivalent Circuit Model for Various Gap Widths g (p = 80 μm, w = 6 μm, α1 = 0.31, α2 = 0.11, β = 0.80)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T = 4 n ˜ e f f n ˜ a i r ( n ˜ e f f + n ˜ a i r ) 2 exp [ i ( n ˜ e f f n ˜ a i r ) k 0 d ] FP,
FP = 1 1 ( n ˜ e f f n ˜ a i r n ˜ e f f + n ˜ a i r ) 2 exp [ 2 i n ˜ e f f k 0 d ]
C 1 , 2 = α 1 , 2 ε 0 ε e f f a K ( k 01 , 2 ) K ( 1 k 01 , 2 2 ) ,
L = μ 0 l 4 π { 2 sin h 1 ( l w ) + 2 ( l w ) sin h 1 ( w l ) + 2 3 [ ( l w ) 2 + w l ( w 2 + l 2 ) 3 / 2 l w 2 ] } .
M 1 = μ 0 4 π [ 2 a sin h 1 ( a h ) + 2 ( h h 2 + a 2 ) ] ,
f r = 1 2 π ( 2 L 1 + 2 M 1 + L 2 ) ( C 1 + C 2 / 2 ) ,

Metrics