Abstract

ZnO nanorods (NRs) self-organized into flowers were synthesized at different temperatures ranging from 100°C to 180°C by using the hydrothermal method. The existence of Zn interstitials (Zni) was confirmed by X-ray photoelectron spectroscopy and a larger amount of Zni was found in the ZnO NRs prepared at higher temperatures. A redshift of the emission peak of more than 15 nm was observed for the ZnO NRs under single photon excitation. The nonlinear optical properties of the flower-like ZnO NRs were characterized by using focused femtosecond laser light and strong three-photon-induced luminescence was observed at an excitation wavelength of ~750 nm. More interestingly, a large redshift of the emission peak was observed with increasing excitation intensity, resulting in efficient blue emission with a narrow bandwidth of ~30 nm. It was confirmed that the large redshift originates from the heating of the ZnO NRs to a temperature of more than 800°C and the closely packed ZnO NRs in the flowers play a crucial role in heat accumulation. The stable and efficient three-photon-induced blue emission from such ZnO NRs may find potential applications in the fields of optical display, high-temperature sensors and light therapy of tumors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods

Jun Dai, Jian-Hua Zeng, Sheng Lan, Xia Wan, and Shao-Long Tie
Opt. Express 21(8) 10025-10038 (2013)

Controllable color display induced by excitation-intensity-dependent competition between second and third harmonic generation in ZnO nanorods

Jun Dai, Mao-Hui Yuan, Jian-Hua Zeng, Qiao-Feng Dai, Sheng Lan, Chai Xiao, and Shao-Long Tie
Appl. Opt. 53(2) 189-194 (2014)

Optimal length of ZnO nanorods for improving the light-extraction efficiency of blue InGaN light-emitting diodes

Hyun Jeong, Rafael Salas-Montiel, and Mun Seok Jeong
Opt. Express 23(18) 23195-23207 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
    [Crossref]
  2. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
    [Crossref] [PubMed]
  3. K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
    [Crossref] [PubMed]
  4. H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-Equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
    [Crossref]
  5. L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, “Formation of ZnO nanoparticles by the reaction of zinc metal with aliphatic alcohols,” J. Cluster Sci. 18(3), 660–670 (2007).
    [Crossref]
  6. L. S. Panchakarla, M. A. Shah, A. Govindaraj, and C. N. R. Rao, “A simple method to prepare ZnO and Al (OH)3 nanorods by the reaction of the metals with liquid water,” J. Solid State Chem. 180(11), 3106–3110 (2007).
    [Crossref]
  7. M. Vafaee, M. Sasani Ghamsari, and S. Radiman, “Highly concentrated zinc oxide nanocrystals sol with strong blueemission,” J. Lumin. 131(1), 155–158 (2011).
    [Crossref]
  8. W. K. Tan, G. Kawamura, H. Muto, K. A. Razak, Z. Lockman, and A. Matsuda, “Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings,” J. Lumin. 158(0), 44–49 (2015).
    [Crossref]
  9. S. Vempati, J. Mitra, and P. Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore,” Nanoscale Res. Lett. 7(1), 470 (2012).
    [Crossref] [PubMed]
  10. B. B. Jin and D. J. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin. 132(8), 1879–1884 (2012).
    [Crossref]
  11. Z. Chen, X. X. Li, N. Chen, H. Wang, G. P. Du, and A. Y. M. Suen, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method,” J. Sol-Gel Sci. Technol. 62(2), 252–258 (2012).
    [Crossref]
  12. J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
    [Crossref]
  13. H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
    [Crossref] [PubMed]
  14. O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem. 21(45), 18354–18358 (2011).
    [Crossref]
  15. S. K. Mishra, R. K. Srivastava, and S. G. Prakash, “ZnO nanoparticles: Structural, optical and photoconductivity characteristics,” J. Alloys Compd. 539(0), 1–6 (2012).
    [Crossref]
  16. Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
    [Crossref]
  17. B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J. Biophotonics 5(3), 283–291 (2012).
    [Crossref] [PubMed]
  18. S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
    [Crossref]
  19. J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
    [Crossref]
  20. S. K. Das, F. Güell, C. Gray, P. K. Das, R. Grunwald, and E. McGlynn, “ZnO nanorods for efficient third harmonic UV generation,” Opt. Mater. Express 4(4), 701–709 (2014).
    [Crossref]
  21. S. Schmidt, M. Mascheck, M. Silies, T. Yatsui, K. Kitamura, M. Ohtsu, and C. Lienau, “Distinguishing between ultrafast optical harmonic generation and multi-photon-induced luminescence from ZnO thin films by frequency-resolved interferometric autocorrelation microscopy,” Opt. Express 18(24), 25016–25028 (2010).
    [Crossref] [PubMed]
  22. R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int. 39(3), 2283–2292 (2013).
    [Crossref]
  23. P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys., A Mater. Sci. Process. 90(2), 317–321 (2007).
    [Crossref]
  24. D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
    [Crossref]
  25. L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, “Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy,” Appl. Surf. Sci. 256(11), 3592–3597 (2010).
    [Crossref]
  26. O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, “Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria,” J. Phys. D Appl. Phys. 42(22), 225305 (2009).
    [Crossref]
  27. J. P. S. Badyal, X. K. Zhang, and R. M. Lambert, “A model oxide catalyst system for the activation of methane: lithium-doped NiO on Ni(111),” Surf. Sci. 225(1–2), L15–L19 (1990).
    [Crossref]
  28. P. V. Kamath and C. N. R. Rao, “Electron spectroscopic studies of oxygen and carbon dioxide adsorbed on metal surfaces,” J. Phys. Chem. 88(3), 464–469 (1984).
    [Crossref]
  29. T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, and Y. Yamaguchi, “Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film,” Surf. Sci. 448(2–3), 101–107 (2000).
    [Crossref]
  30. L. Yu, X. X. Guo, and Y. X. Xu, “Effect of basicity and adding CO2 in the feed on the oxidative coupling of methane over K2O and SrO promoted La2O3/ZnO catalysts,” Appl. Catal. A 164(1–2), 47–57 (1997).
  31. J. H. Zheng, Q. Jiang, and J. S. Lian, “Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method,” Appl. Surf. Sci. 257(11), 5083–5087 (2011).
    [Crossref]
  32. J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
    [Crossref]
  33. G. R. Li, X. H. Lu, C. Y. Su, and Y. X. Tong, “Facile synthesis of hierarchical ZnO: Tb3+ nanorod bundles and their optical and magnetic properties,” J. Phys. Chem. C 112(8), 2927–2933 (2008).
    [Crossref]
  34. M. Ahmad and J. Zhu, “ZnO based advanced functional nanostructures: synthesis, properties and applications,” J. Mater. Chem. 21(3), 599–614 (2011).
    [Crossref]
  35. Y. C. Chang and L. J. Chen, “ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak,” J. Phys. Chem. C 111(3), 1268–1272 (2007).
    [Crossref]
  36. W. G. Han, S. G. Kang, T. W. Kim, D. W. Kim, and W. J. Cho, “Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates,” Appl. Surf. Sci. 245(1-4), 384–390 (2005).
    [Crossref]
  37. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley & Sons, 1983).
  38. M. A. Arenas, I. García, and J. de Damborenea, “X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanised steel implanted with rare earths,” Corros. Sci. 46(4), 1033–1049 (2004).
    [Crossref]
  39. C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
    [Crossref]
  40. A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
    [Crossref]
  41. W. S. Shi, B. Cheng, L. Zhang, and E. T. Samulski, “Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions,” J. Appl. Phys. 98(8), 083502 (2005).
    [Crossref]
  42. Z. W. Liang, X. Yu, B. F. Lei, P. Y. Liu, and W. J. Mai, “Novel blue-violet photoluminescence from sputtered ZnO thin films,” J. Alloys Compd. 509(17), 5437–5440 (2011).
    [Crossref]
  43. H. B. Zeng, Z. G. Li, W. P. Cai, and P. S. Liu, “Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells,” J. Appl. Phys. 102(10), 104307 (2007).
    [Crossref]
  44. P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
    [Crossref] [PubMed]
  45. R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, and C. Klingshirn, “Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO,” Phys. Status Solidi 3(4), 976–979 (2006).
    [Crossref]
  46. V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
    [Crossref]
  47. S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys. 33(8-9), 1686–1703 (2012).
    [Crossref]

2015 (1)

W. K. Tan, G. Kawamura, H. Muto, K. A. Razak, Z. Lockman, and A. Matsuda, “Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings,” J. Lumin. 158(0), 44–49 (2015).
[Crossref]

2014 (1)

2013 (3)

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int. 39(3), 2283–2292 (2013).
[Crossref]

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

2012 (8)

S. K. Mishra, R. K. Srivastava, and S. G. Prakash, “ZnO nanoparticles: Structural, optical and photoconductivity characteristics,” J. Alloys Compd. 539(0), 1–6 (2012).
[Crossref]

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
[Crossref]

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J. Biophotonics 5(3), 283–291 (2012).
[Crossref] [PubMed]

S. Vempati, J. Mitra, and P. Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore,” Nanoscale Res. Lett. 7(1), 470 (2012).
[Crossref] [PubMed]

B. B. Jin and D. J. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin. 132(8), 1879–1884 (2012).
[Crossref]

Z. Chen, X. X. Li, N. Chen, H. Wang, G. P. Du, and A. Y. M. Suen, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method,” J. Sol-Gel Sci. Technol. 62(2), 252–258 (2012).
[Crossref]

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys. 33(8-9), 1686–1703 (2012).
[Crossref]

2011 (5)

J. H. Zheng, Q. Jiang, and J. S. Lian, “Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method,” Appl. Surf. Sci. 257(11), 5083–5087 (2011).
[Crossref]

Z. W. Liang, X. Yu, B. F. Lei, P. Y. Liu, and W. J. Mai, “Novel blue-violet photoluminescence from sputtered ZnO thin films,” J. Alloys Compd. 509(17), 5437–5440 (2011).
[Crossref]

O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem. 21(45), 18354–18358 (2011).
[Crossref]

M. Ahmad and J. Zhu, “ZnO based advanced functional nanostructures: synthesis, properties and applications,” J. Mater. Chem. 21(3), 599–614 (2011).
[Crossref]

M. Vafaee, M. Sasani Ghamsari, and S. Radiman, “Highly concentrated zinc oxide nanocrystals sol with strong blueemission,” J. Lumin. 131(1), 155–158 (2011).
[Crossref]

2010 (5)

H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-Equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

S. Schmidt, M. Mascheck, M. Silies, T. Yatsui, K. Kitamura, M. Ohtsu, and C. Lienau, “Distinguishing between ultrafast optical harmonic generation and multi-photon-induced luminescence from ZnO thin films by frequency-resolved interferometric autocorrelation microscopy,” Opt. Express 18(24), 25016–25028 (2010).
[Crossref] [PubMed]

L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, “Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy,” Appl. Surf. Sci. 256(11), 3592–3597 (2010).
[Crossref]

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

2009 (1)

O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, “Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria,” J. Phys. D Appl. Phys. 42(22), 225305 (2009).
[Crossref]

2008 (3)

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
[Crossref] [PubMed]

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

G. R. Li, X. H. Lu, C. Y. Su, and Y. X. Tong, “Facile synthesis of hierarchical ZnO: Tb3+ nanorod bundles and their optical and magnetic properties,” J. Phys. Chem. C 112(8), 2927–2933 (2008).
[Crossref]

2007 (6)

H. B. Zeng, Z. G. Li, W. P. Cai, and P. S. Liu, “Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells,” J. Appl. Phys. 102(10), 104307 (2007).
[Crossref]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
[Crossref] [PubMed]

L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, “Formation of ZnO nanoparticles by the reaction of zinc metal with aliphatic alcohols,” J. Cluster Sci. 18(3), 660–670 (2007).
[Crossref]

L. S. Panchakarla, M. A. Shah, A. Govindaraj, and C. N. R. Rao, “A simple method to prepare ZnO and Al (OH)3 nanorods by the reaction of the metals with liquid water,” J. Solid State Chem. 180(11), 3106–3110 (2007).
[Crossref]

Y. C. Chang and L. J. Chen, “ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak,” J. Phys. Chem. C 111(3), 1268–1272 (2007).
[Crossref]

P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys., A Mater. Sci. Process. 90(2), 317–321 (2007).
[Crossref]

2006 (3)

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, and C. Klingshirn, “Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO,” Phys. Status Solidi 3(4), 976–979 (2006).
[Crossref]

2005 (2)

W. S. Shi, B. Cheng, L. Zhang, and E. T. Samulski, “Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions,” J. Appl. Phys. 98(8), 083502 (2005).
[Crossref]

W. G. Han, S. G. Kang, T. W. Kim, D. W. Kim, and W. J. Cho, “Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates,” Appl. Surf. Sci. 245(1-4), 384–390 (2005).
[Crossref]

2004 (3)

M. A. Arenas, I. García, and J. de Damborenea, “X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanised steel implanted with rare earths,” Corros. Sci. 46(4), 1033–1049 (2004).
[Crossref]

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
[Crossref]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

2000 (1)

T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, and Y. Yamaguchi, “Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film,” Surf. Sci. 448(2–3), 101–107 (2000).
[Crossref]

1997 (2)

L. Yu, X. X. Guo, and Y. X. Xu, “Effect of basicity and adding CO2 in the feed on the oxidative coupling of methane over K2O and SrO promoted La2O3/ZnO catalysts,” Appl. Catal. A 164(1–2), 47–57 (1997).

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
[Crossref]

1990 (1)

J. P. S. Badyal, X. K. Zhang, and R. M. Lambert, “A model oxide catalyst system for the activation of methane: lithium-doped NiO on Ni(111),” Surf. Sci. 225(1–2), L15–L19 (1990).
[Crossref]

1984 (1)

P. V. Kamath and C. N. R. Rao, “Electron spectroscopic studies of oxygen and carbon dioxide adsorbed on metal surfaces,” J. Phys. Chem. 88(3), 464–469 (1984).
[Crossref]

Ahmad, M.

M. Ahmad and J. Zhu, “ZnO based advanced functional nanostructures: synthesis, properties and applications,” J. Mater. Chem. 21(3), 599–614 (2011).
[Crossref]

Akhavan, O.

O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, “Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria,” J. Phys. D Appl. Phys. 42(22), 225305 (2009).
[Crossref]

Al-Douri, Y.

R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int. 39(3), 2283–2292 (2013).
[Crossref]

Al-Gaashani, R.

R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int. 39(3), 2283–2292 (2013).
[Crossref]

Arenas, M. A.

M. A. Arenas, I. García, and J. de Damborenea, “X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanised steel implanted with rare earths,” Corros. Sci. 46(4), 1033–1049 (2004).
[Crossref]

Azimirad, R.

O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, “Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria,” J. Phys. D Appl. Phys. 42(22), 225305 (2009).
[Crossref]

Badyal, J. P. S.

J. P. S. Badyal, X. K. Zhang, and R. M. Lambert, “A model oxide catalyst system for the activation of methane: lithium-doped NiO on Ni(111),” Surf. Sci. 225(1–2), L15–L19 (1990).
[Crossref]

Bagnall, D. M.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
[Crossref]

Beirão, S. G. S.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys. 33(8-9), 1686–1703 (2012).
[Crossref]

Beling, C. D.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Bian, J. C.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Blume, R.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Bock, M.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Brückner, J.

R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, and C. Klingshirn, “Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO,” Phys. Status Solidi 3(4), 976–979 (2006).
[Crossref]

Butler, S. J.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J. Biophotonics 5(3), 283–291 (2012).
[Crossref] [PubMed]

Cai, W.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
[Crossref] [PubMed]

Cai, W. P.

H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-Equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

H. B. Zeng, Z. G. Li, W. P. Cai, and P. S. Liu, “Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells,” J. Appl. Phys. 102(10), 104307 (2007).
[Crossref]

Chan, W. K.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Chang, Y. C.

Y. C. Chang and L. J. Chen, “ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak,” J. Phys. Chem. C 111(3), 1268–1272 (2007).
[Crossref]

Cheah, K. W.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Chen, L. J.

Y. C. Chang and L. J. Chen, “ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak,” J. Phys. Chem. C 111(3), 1268–1272 (2007).
[Crossref]

Chen, N.

Z. Chen, X. X. Li, N. Chen, H. Wang, G. P. Du, and A. Y. M. Suen, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method,” J. Sol-Gel Sci. Technol. 62(2), 252–258 (2012).
[Crossref]

Chen, Y.

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
[Crossref]

Chen, Y. C.

P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys., A Mater. Sci. Process. 90(2), 317–321 (2007).
[Crossref]

Chen, Y. F.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
[Crossref]

Chen, Z.

Z. Chen, X. X. Li, N. Chen, H. Wang, G. P. Du, and A. Y. M. Suen, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method,” J. Sol-Gel Sci. Technol. 62(2), 252–258 (2012).
[Crossref]

Chen, Z. D.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Cheng, B.

W. S. Shi, B. Cheng, L. Zhang, and E. T. Samulski, “Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions,” J. Appl. Phys. 98(8), 083502 (2005).
[Crossref]

Cheung, C. K.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Cho, J.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Cho, W. J.

W. G. Han, S. G. Kang, T. W. Kim, D. W. Kim, and W. J. Cho, “Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates,” Appl. Surf. Sci. 245(1-4), 384–390 (2005).
[Crossref]

Chon, J. W. M.

Choy, W. C. H.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Das, J.

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

Das, P. K.

Das, S. K.

S. K. Das, F. Güell, C. Gray, P. K. Das, R. Grunwald, and E. McGlynn, “ZnO nanorods for efficient third harmonic UV generation,” Opt. Mater. Express 4(4), 701–709 (2014).
[Crossref]

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Daud, A. R.

R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int. 39(3), 2283–2292 (2013).
[Crossref]

Dawson, P.

S. Vempati, J. Mitra, and P. Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore,” Nanoscale Res. Lett. 7(1), 470 (2012).
[Crossref] [PubMed]

de Damborenea, J.

M. A. Arenas, I. García, and J. de Damborenea, “X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanised steel implanted with rare earths,” Corros. Sci. 46(4), 1033–1049 (2004).
[Crossref]

Decker, M.

R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, and C. Klingshirn, “Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO,” Phys. Status Solidi 3(4), 976–979 (2006).
[Crossref]

Ding, L.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Djurisic, A. B.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

Djurišic, A. B.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Du, G. P.

Z. Chen, X. X. Li, N. Chen, H. Wang, G. P. Du, and A. Y. M. Suen, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method,” J. Sol-Gel Sci. Technol. 62(2), 252–258 (2012).
[Crossref]

Duan, G. T.

H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-Equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Emelchenko, G. A.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
[Crossref]

Fahlman, M.

L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, “Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy,” Appl. Surf. Sci. 256(11), 3592–3597 (2010).
[Crossref]

Frazer, N. L.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Fu, Y. Q.

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

Fujita, Y.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J. Biophotonics 5(3), 283–291 (2012).
[Crossref] [PubMed]

Fung, S.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

García, I.

M. A. Arenas, I. García, and J. de Damborenea, “X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanised steel implanted with rare earths,” Corros. Sci. 46(4), 1033–1049 (2004).
[Crossref]

Garcia-Gancedo, L.

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

Ge, W. K.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Geng, J.

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

Goto, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
[Crossref]

Govindaraj, A.

L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, “Formation of ZnO nanoparticles by the reaction of zinc metal with aliphatic alcohols,” J. Cluster Sci. 18(3), 660–670 (2007).
[Crossref]

L. S. Panchakarla, M. A. Shah, A. Govindaraj, and C. N. R. Rao, “A simple method to prepare ZnO and Al (OH)3 nanorods by the reaction of the metals with liquid water,” J. Solid State Chem. 180(11), 3106–3110 (2007).
[Crossref]

Gray, C.

Grunwald, R.

S. K. Das, F. Güell, C. Gray, P. K. Das, R. Grunwald, and E. McGlynn, “ZnO nanorods for efficient third harmonic UV generation,” Opt. Mater. Express 4(4), 701–709 (2014).
[Crossref]

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Gu, M.

Güell, F.

Guo, H. Z.

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
[Crossref]

Guo, X. X.

L. Yu, X. X. Guo, and Y. X. Xu, “Effect of basicity and adding CO2 in the feed on the oxidative coupling of methane over K2O and SrO promoted La2O3/ZnO catalysts,” Appl. Catal. A 164(1–2), 47–57 (1997).

Han, W. G.

W. G. Han, S. G. Kang, T. W. Kim, D. W. Kim, and W. J. Cho, “Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates,” Appl. Surf. Sci. 245(1-4), 384–390 (2005).
[Crossref]

Hasan, T.

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

Hauschild, R.

R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, and C. Klingshirn, “Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO,” Phys. Status Solidi 3(4), 976–979 (2006).
[Crossref]

Hävecker, M.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

He, H. Y.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Hsieh, P. T.

P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys., A Mater. Sci. Process. 90(2), 317–321 (2007).
[Crossref]

Jang, J. I.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Jiang, Q.

J. H. Zheng, Q. Jiang, and J. S. Lian, “Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method,” Appl. Surf. Sci. 257(11), 5083–5087 (2011).
[Crossref]

Jin, B. B.

B. B. Jin and D. J. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin. 132(8), 1879–1884 (2012).
[Crossref]

Kalt, H.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
[Crossref] [PubMed]

R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, and C. Klingshirn, “Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO,” Phys. Status Solidi 3(4), 976–979 (2006).
[Crossref]

Kamath, P. V.

P. V. Kamath and C. N. R. Rao, “Electron spectroscopic studies of oxygen and carbon dioxide adsorbed on metal surfaces,” J. Phys. Chem. 88(3), 464–469 (1984).
[Crossref]

Kang, S. G.

W. G. Han, S. G. Kang, T. W. Kim, D. W. Kim, and W. J. Cho, “Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates,” Appl. Surf. Sci. 245(1-4), 384–390 (2005).
[Crossref]

Kao, K. S.

P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys., A Mater. Sci. Process. 90(2), 317–321 (2007).
[Crossref]

Karasuda, T.

T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, and Y. Yamaguchi, “Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film,” Surf. Sci. 448(2–3), 101–107 (2000).
[Crossref]

Kawabe, T.

T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, and Y. Yamaguchi, “Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film,” Surf. Sci. 448(2–3), 101–107 (2000).
[Crossref]

Kawamura, G.

W. K. Tan, G. Kawamura, H. Muto, K. A. Razak, Z. Lockman, and A. Matsuda, “Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings,” J. Lumin. 158(0), 44–49 (2015).
[Crossref]

Ketterson, J. B.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Kim, D. W.

W. G. Han, S. G. Kang, T. W. Kim, D. W. Kim, and W. J. Cho, “Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates,” Appl. Surf. Sci. 245(1-4), 384–390 (2005).
[Crossref]

Kim, T. W.

W. G. Han, S. G. Kang, T. W. Kim, D. W. Kim, and W. J. Cho, “Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates,” Appl. Surf. Sci. 245(1-4), 384–390 (2005).
[Crossref]

Kitamura, K.

Klingshirn, C.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
[Crossref] [PubMed]

R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, and C. Klingshirn, “Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO,” Phys. Status Solidi 3(4), 976–979 (2006).
[Crossref]

Klötzer, B.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Knop-Gericke, A.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Koyama, S.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
[Crossref]

Kwok, W. M.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Kwong, C. Y.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Lambert, R. M.

J. P. S. Badyal, X. K. Zhang, and R. M. Lambert, “A model oxide catalyst system for the activation of methane: lithium-doped NiO on Ni(111),” Surf. Sci. 225(1–2), L15–L19 (1990).
[Crossref]

Lee, H. W.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Lee, K. M.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Lee, S.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Lei, B. F.

Z. W. Liang, X. Yu, B. F. Lei, P. Y. Liu, and W. J. Mai, “Novel blue-violet photoluminescence from sputtered ZnO thin films,” J. Alloys Compd. 509(17), 5437–5440 (2011).
[Crossref]

Leung, Y. H.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Li, G. R.

G. R. Li, X. H. Lu, C. Y. Su, and Y. X. Tong, “Facile synthesis of hierarchical ZnO: Tb3+ nanorod bundles and their optical and magnetic properties,” J. Phys. Chem. C 112(8), 2927–2933 (2008).
[Crossref]

Li, X. X.

Z. Chen, X. X. Li, N. Chen, H. Wang, G. P. Du, and A. Y. M. Suen, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method,” J. Sol-Gel Sci. Technol. 62(2), 252–258 (2012).
[Crossref]

Li, Y.

H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-Equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Li, Z.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Li, Z. G.

H. B. Zeng, Z. G. Li, W. P. Cai, and P. S. Liu, “Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells,” J. Appl. Phys. 102(10), 104307 (2007).
[Crossref]

Lian, J. S.

J. H. Zheng, Q. Jiang, and J. S. Lian, “Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method,” Appl. Surf. Sci. 257(11), 5083–5087 (2011).
[Crossref]

Liang, Z. W.

Z. W. Liang, X. Yu, B. F. Lei, P. Y. Liu, and W. J. Mai, “Novel blue-violet photoluminescence from sputtered ZnO thin films,” J. Alloys Compd. 509(17), 5437–5440 (2011).
[Crossref]

Lienau, C.

Lin, K. Q.

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
[Crossref]

Lin, S. S.

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

Ling, C. C.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Liu, P.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
[Crossref] [PubMed]

Liu, P. S.

H. B. Zeng, Z. G. Li, W. P. Cai, and P. S. Liu, “Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells,” J. Appl. Phys. 102(10), 104307 (2007).
[Crossref]

Liu, P. Y.

Z. W. Liang, X. Yu, B. F. Lei, P. Y. Liu, and W. J. Mai, “Novel blue-violet photoluminescence from sputtered ZnO thin films,” J. Alloys Compd. 509(17), 5437–5440 (2011).
[Crossref]

Liu, X. J.

L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, “Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy,” Appl. Surf. Sci. 256(11), 3592–3597 (2010).
[Crossref]

Lockman, Z.

W. K. Tan, G. Kawamura, H. Muto, K. A. Razak, Z. Lockman, and A. Matsuda, “Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings,” J. Lumin. 158(0), 44–49 (2015).
[Crossref]

Lorenz, H.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Lourenço, M. J. V.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys. 33(8-9), 1686–1703 (2012).
[Crossref]

Lu, X. H.

G. R. Li, X. H. Lu, C. Y. Su, and Y. X. Tong, “Facile synthesis of hierarchical ZnO: Tb3+ nanorod bundles and their optical and magnetic properties,” J. Phys. Chem. C 112(8), 2927–2933 (2008).
[Crossref]

Lui, H. F.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Luo, J. K.

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

Luo, Q.

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
[Crossref]

Mai, W. J.

Z. W. Liang, X. Yu, B. F. Lei, P. Y. Liu, and W. J. Mai, “Novel blue-violet photoluminescence from sputtered ZnO thin films,” J. Alloys Compd. 509(17), 5437–5440 (2011).
[Crossref]

Masalov, V. M.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
[Crossref]

Mascheck, M.

Matsuda, A.

W. K. Tan, G. Kawamura, H. Muto, K. A. Razak, Z. Lockman, and A. Matsuda, “Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings,” J. Lumin. 158(0), 44–49 (2015).
[Crossref]

McGlynn, E.

Mehrabian, M.

O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, “Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria,” J. Phys. D Appl. Phys. 42(22), 225305 (2009).
[Crossref]

Memmel, N.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Mirabbaszadeh, K.

O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, “Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria,” J. Phys. D Appl. Phys. 42(22), 225305 (2009).
[Crossref]

Mishra, D. K.

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

Mishra, S. K.

S. K. Mishra, R. K. Srivastava, and S. G. Prakash, “ZnO nanoparticles: Structural, optical and photoconductivity characteristics,” J. Alloys Compd. 539(0), 1–6 (2012).
[Crossref]

Mitra, J.

S. Vempati, J. Mitra, and P. Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore,” Nanoscale Res. Lett. 7(1), 470 (2012).
[Crossref] [PubMed]

Mondal, O.

O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem. 21(45), 18354–18358 (2011).
[Crossref]

Muto, H.

W. K. Tan, G. Kawamura, H. Muto, K. A. Razak, Z. Lockman, and A. Matsuda, “Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings,” J. Lumin. 158(0), 44–49 (2015).
[Crossref]

Narasimulu, A. A.

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

Nayak, B. B.

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

Neogi, A.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J. Biophotonics 5(3), 283–291 (2012).
[Crossref] [PubMed]

Neogi, P. B.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J. Biophotonics 5(3), 283–291 (2012).
[Crossref] [PubMed]

Nieto de Castro, C. A.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys. 33(8-9), 1686–1703 (2012).
[Crossref]

O’Neill, C.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Ohtsu, M.

Pal, M.

O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem. 21(45), 18354–18358 (2011).
[Crossref]

Panchakarla, L. S.

L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, “Formation of ZnO nanoparticles by the reaction of zinc metal with aliphatic alcohols,” J. Cluster Sci. 18(3), 660–670 (2007).
[Crossref]

L. S. Panchakarla, M. A. Shah, A. Govindaraj, and C. N. R. Rao, “A simple method to prepare ZnO and Al (OH)3 nanorods by the reaction of the metals with liquid water,” J. Solid State Chem. 180(11), 3106–3110 (2007).
[Crossref]

Park, S.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Peng, D. L.

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
[Crossref]

Peng, R. Q.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Penner, S.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Phillips, D. L.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Pradhan, S. K.

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

Prakash, S. G.

S. K. Mishra, R. K. Srivastava, and S. G. Prakash, “ZnO nanoparticles: Structural, optical and photoconductivity characteristics,” J. Alloys Compd. 539(0), 1–6 (2012).
[Crossref]

Priller, H.

R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, and C. Klingshirn, “Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO,” Phys. Status Solidi 3(4), 976–979 (2006).
[Crossref]

Radiman, S.

R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int. 39(3), 2283–2292 (2013).
[Crossref]

M. Vafaee, M. Sasani Ghamsari, and S. Radiman, “Highly concentrated zinc oxide nanocrystals sol with strong blueemission,” J. Lumin. 131(1), 155–158 (2011).
[Crossref]

Rameshan, C.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Rao, C. N. R.

L. S. Panchakarla, M. A. Shah, A. Govindaraj, and C. N. R. Rao, “A simple method to prepare ZnO and Al (OH)3 nanorods by the reaction of the metals with liquid water,” J. Solid State Chem. 180(11), 3106–3110 (2007).
[Crossref]

L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, “Formation of ZnO nanoparticles by the reaction of zinc metal with aliphatic alcohols,” J. Cluster Sci. 18(3), 660–670 (2007).
[Crossref]

P. V. Kamath and C. N. R. Rao, “Electron spectroscopic studies of oxygen and carbon dioxide adsorbed on metal surfaces,” J. Phys. Chem. 88(3), 464–469 (1984).
[Crossref]

Rao, T. K. R.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Razak, K. A.

W. K. Tan, G. Kawamura, H. Muto, K. A. Razak, Z. Lockman, and A. Matsuda, “Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings,” J. Lumin. 158(0), 44–49 (2015).
[Crossref]

Ribeiro, A. P. C.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys. 33(8-9), 1686–1703 (2012).
[Crossref]

Rocha, T.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Rotermund, F.

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Roul, B.

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

Roy, B. K.

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Roy, V. A. L.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Rupprechter, G.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Rusu, E. V.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
[Crossref]

Sahu, D. R.

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

Samarov, E. N.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
[Crossref]

Samulski, E. T.

W. S. Shi, B. Cheng, L. Zhang, and E. T. Samulski, “Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions,” J. Appl. Phys. 98(8), 083502 (2005).
[Crossref]

Santos, F. J. V.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys. 33(8-9), 1686–1703 (2012).
[Crossref]

Sarangi, S. N.

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

Sasani Ghamsari, M.

M. Vafaee, M. Sasani Ghamsari, and S. Radiman, “Highly concentrated zinc oxide nanocrystals sol with strong blueemission,” J. Lumin. 131(1), 155–158 (2011).
[Crossref]

Schlögl, R.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Schmidt, S.

Shah, M. A.

L. S. Panchakarla, M. A. Shah, A. Govindaraj, and C. N. R. Rao, “A simple method to prepare ZnO and Al (OH)3 nanorods by the reaction of the metals with liquid water,” J. Solid State Chem. 180(11), 3106–3110 (2007).
[Crossref]

Shao, G.

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

Shen, M. Y.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
[Crossref]

Shi, W. S.

W. S. Shi, B. Cheng, L. Zhang, and E. T. Samulski, “Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions,” J. Appl. Phys. 98(8), 083502 (2005).
[Crossref]

Shimomura, S.

T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, and Y. Yamaguchi, “Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film,” Surf. Sci. 448(2–3), 101–107 (2000).
[Crossref]

Silies, M.

Singh, D.

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

Srivastava, R. K.

S. K. Mishra, R. K. Srivastava, and S. G. Prakash, “ZnO nanoparticles: Structural, optical and photoconductivity characteristics,” J. Alloys Compd. 539(0), 1–6 (2012).
[Crossref]

Stadlmayr, W.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Su, C. Y.

G. R. Li, X. H. Lu, C. Y. Su, and Y. X. Tong, “Facile synthesis of hierarchical ZnO: Tb3+ nanorod bundles and their optical and magnetic properties,” J. Phys. Chem. C 112(8), 2927–2933 (2008).
[Crossref]

Suen, A. Y. M.

Z. Chen, X. X. Li, N. Chen, H. Wang, G. P. Du, and A. Y. M. Suen, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method,” J. Sol-Gel Sci. Technol. 62(2), 252–258 (2012).
[Crossref]

Surya, C.

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Suzuki, E.

T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, and Y. Yamaguchi, “Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film,” Surf. Sci. 448(2–3), 101–107 (2000).
[Crossref]

Tabata, K.

T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, and Y. Yamaguchi, “Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film,” Surf. Sci. 448(2–3), 101–107 (2000).
[Crossref]

Tabet, N.

R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int. 39(3), 2283–2292 (2013).
[Crossref]

Tam, K. H.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

Tan, J. Z. Y.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Tan, W. K.

W. K. Tan, G. Kawamura, H. Muto, K. A. Razak, Z. Lockman, and A. Matsuda, “Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings,” J. Lumin. 158(0), 44–49 (2015).
[Crossref]

Teschner, D.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Tiginyanu, I. M.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
[Crossref]

Tong, Y. X.

G. R. Li, X. H. Lu, C. Y. Su, and Y. X. Tong, “Facile synthesis of hierarchical ZnO: Tb3+ nanorod bundles and their optical and magnetic properties,” J. Phys. Chem. C 112(8), 2927–2933 (2008).
[Crossref]

Urban, B. E.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J. Biophotonics 5(3), 283–291 (2012).
[Crossref] [PubMed]

Ursaki, V. V.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
[Crossref]

Vafaee, M.

M. Vafaee, M. Sasani Ghamsari, and S. Radiman, “Highly concentrated zinc oxide nanocrystals sol with strong blueemission,” J. Lumin. 131(1), 155–158 (2011).
[Crossref]

Vempati, S.

S. Vempati, J. Mitra, and P. Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore,” Nanoscale Res. Lett. 7(1), 470 (2012).
[Crossref] [PubMed]

Verma, S.

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

Wang, C. M.

P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys., A Mater. Sci. Process. 90(2), 317–321 (2007).
[Crossref]

Wang, D. J.

B. B. Jin and D. J. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin. 132(8), 1879–1884 (2012).
[Crossref]

Wang, H.

Z. Chen, X. X. Li, N. Chen, H. Wang, G. P. Du, and A. Y. M. Suen, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method,” J. Sol-Gel Sci. Technol. 62(2), 252–258 (2012).
[Crossref]

Wang, J.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Wang, L. S.

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
[Crossref]

Weilach, C.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Willander, M.

L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, “Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy,” Appl. Surf. Sci. 256(11), 3592–3597 (2010).
[Crossref]

Xu, X.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
[Crossref] [PubMed]

Xu, X. X.

H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-Equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Xu, Y. X.

L. Yu, X. X. Guo, and Y. X. Xu, “Effect of basicity and adding CO2 in the feed on the oxidative coupling of methane over K2O and SrO promoted La2O3/ZnO catalysts,” Appl. Catal. A 164(1–2), 47–57 (1997).

Yamaguchi, Y.

T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, and Y. Yamaguchi, “Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film,” Surf. Sci. 448(2–3), 101–107 (2000).
[Crossref]

Yang, F.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Yang, J. H.

L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, “Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy,” Appl. Surf. Sci. 256(11), 3592–3597 (2010).
[Crossref]

Yang, L. L.

L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, “Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy,” Appl. Surf. Sci. 256(11), 3592–3597 (2010).
[Crossref]

Yang, S. K.

H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-Equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Yao, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
[Crossref]

Yatsui, T.

Yu, L.

L. Yu, X. X. Guo, and Y. X. Xu, “Effect of basicity and adding CO2 in the feed on the oxidative coupling of methane over K2O and SrO promoted La2O3/ZnO catalysts,” Appl. Catal. A 164(1–2), 47–57 (1997).

Yu, X.

Z. W. Liang, X. Yu, B. F. Lei, P. Y. Liu, and W. J. Mai, “Novel blue-violet photoluminescence from sputtered ZnO thin films,” J. Alloys Compd. 509(17), 5437–5440 (2011).
[Crossref]

Yue, G. H.

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
[Crossref]

Zalamai, V. V.

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
[Crossref]

Zemlyanov, D.

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

Zeng, H.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
[Crossref] [PubMed]

Zeng, H. B.

H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-Equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

H. B. Zeng, Z. G. Li, W. P. Cai, and P. S. Liu, “Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells,” J. Appl. Phys. 102(10), 104307 (2007).
[Crossref]

Zeng, J. L.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Zhang, L.

W. S. Shi, B. Cheng, L. Zhang, and E. T. Samulski, “Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions,” J. Appl. Phys. 98(8), 083502 (2005).
[Crossref]

Zhang, X. K.

J. P. S. Badyal, X. K. Zhang, and R. M. Lambert, “A model oxide catalyst system for the activation of methane: lithium-doped NiO on Ni(111),” Surf. Sci. 225(1–2), L15–L19 (1990).
[Crossref]

Zhang, X. W.

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

Zhao, Q. X.

L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, “Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy,” Appl. Surf. Sci. 256(11), 3592–3597 (2010).
[Crossref]

Zheng, J. H.

J. H. Zheng, Q. Jiang, and J. S. Lian, “Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method,” Appl. Surf. Sci. 257(11), 5083–5087 (2011).
[Crossref]

Zhou, H.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
[Crossref] [PubMed]

Zhu, J.

M. Ahmad and J. Zhu, “ZnO based advanced functional nanostructures: synthesis, properties and applications,” J. Mater. Chem. 21(3), 599–614 (2011).
[Crossref]

Zhu, Z.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
[Crossref]

Zijlstra, P.

ACS Nano (1)

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2(8), 1661–1670 (2008).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-Equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. R. Rao, W. K. Chan, H. F. Lui, and C. Surya, “Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures,” Adv. Funct. Mater. 14(9), 856–864 (2004).
[Crossref]

Appl. Catal. A (1)

L. Yu, X. X. Guo, and Y. X. Xu, “Effect of basicity and adding CO2 in the feed on the oxidative coupling of methane over K2O and SrO promoted La2O3/ZnO catalysts,” Appl. Catal. A 164(1–2), 47–57 (1997).

Appl. Phys. Lett. (2)

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230–2232 (1997).
[Crossref]

S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

Q. Luo, L. S. Wang, H. Z. Guo, K. Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering,” Appl. Phys., A Mater. Sci. Process. 108(1), 239–245 (2012).
[Crossref]

P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Appl. Phys., A Mater. Sci. Process. 90(2), 317–321 (2007).
[Crossref]

Appl. Surf. Sci. (3)

L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, “Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy,” Appl. Surf. Sci. 256(11), 3592–3597 (2010).
[Crossref]

J. H. Zheng, Q. Jiang, and J. S. Lian, “Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method,” Appl. Surf. Sci. 257(11), 5083–5087 (2011).
[Crossref]

W. G. Han, S. G. Kang, T. W. Kim, D. W. Kim, and W. J. Cho, “Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates,” Appl. Surf. Sci. 245(1-4), 384–390 (2005).
[Crossref]

Ceram. Int. (1)

R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int. 39(3), 2283–2292 (2013).
[Crossref]

Corros. Sci. (1)

M. A. Arenas, I. García, and J. de Damborenea, “X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanised steel implanted with rare earths,” Corros. Sci. 46(4), 1033–1049 (2004).
[Crossref]

Int. J. Thermophys. (1)

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys. 33(8-9), 1686–1703 (2012).
[Crossref]

J. Alloys Compd. (2)

Z. W. Liang, X. Yu, B. F. Lei, P. Y. Liu, and W. J. Mai, “Novel blue-violet photoluminescence from sputtered ZnO thin films,” J. Alloys Compd. 509(17), 5437–5440 (2011).
[Crossref]

S. K. Mishra, R. K. Srivastava, and S. G. Prakash, “ZnO nanoparticles: Structural, optical and photoconductivity characteristics,” J. Alloys Compd. 539(0), 1–6 (2012).
[Crossref]

J. Appl. Phys. (2)

H. B. Zeng, Z. G. Li, W. P. Cai, and P. S. Liu, “Strong localization effect in temperature dependence of violet-blue emission from ZnO nanoshells,” J. Appl. Phys. 102(10), 104307 (2007).
[Crossref]

W. S. Shi, B. Cheng, L. Zhang, and E. T. Samulski, “Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions,” J. Appl. Phys. 98(8), 083502 (2005).
[Crossref]

J. Biophotonics (1)

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J. Biophotonics 5(3), 283–291 (2012).
[Crossref] [PubMed]

J. Catal. (1)

C. Rameshan, C. Weilach, W. Stadlmayr, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, D. Zemlyanov, N. Memmel, G. Rupprechter, and B. Klötzer, “Steam reforming of methanol on PdZn near-surface alloys on Pd (111) and Pd foil studied by in-situ XPS, LEIS and PM-IRAS,” J. Catal. 276(1), 101–113 (2010).
[Crossref]

J. Cluster Sci. (1)

L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, “Formation of ZnO nanoparticles by the reaction of zinc metal with aliphatic alcohols,” J. Cluster Sci. 18(3), 660–670 (2007).
[Crossref]

J. Lumin. (4)

M. Vafaee, M. Sasani Ghamsari, and S. Radiman, “Highly concentrated zinc oxide nanocrystals sol with strong blueemission,” J. Lumin. 131(1), 155–158 (2011).
[Crossref]

W. K. Tan, G. Kawamura, H. Muto, K. A. Razak, Z. Lockman, and A. Matsuda, “Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings,” J. Lumin. 158(0), 44–49 (2015).
[Crossref]

B. B. Jin and D. J. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin. 132(8), 1879–1884 (2012).
[Crossref]

J. L. Zeng, X. W. Zhang, J. Z. Y. Tan, J. C. Bian, Z. Li, Z. D. Chen, R. Q. Peng, H. Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135(0), 201–205 (2013).
[Crossref]

J. Mater. Chem. (2)

O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem. 21(45), 18354–18358 (2011).
[Crossref]

M. Ahmad and J. Zhu, “ZnO based advanced functional nanostructures: synthesis, properties and applications,” J. Mater. Chem. 21(3), 599–614 (2011).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

D. Singh, A. A. Narasimulu, L. Garcia-Gancedo, Y. Q. Fu, T. Hasan, S. S. Lin, J. Geng, G. Shao, and J. K. Luo, “Vertically aligned smooth ZnO nanorod films for planar device applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(14), 2525–2528 (2013).
[Crossref]

J. Phys. Chem. (1)

P. V. Kamath and C. N. R. Rao, “Electron spectroscopic studies of oxygen and carbon dioxide adsorbed on metal surfaces,” J. Phys. Chem. 88(3), 464–469 (1984).
[Crossref]

J. Phys. Chem. B (1)

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method,” J. Phys. Chem. B 110(42), 20865–20871 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

Y. C. Chang and L. J. Chen, “ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak,” J. Phys. Chem. C 111(3), 1268–1272 (2007).
[Crossref]

G. R. Li, X. H. Lu, C. Y. Su, and Y. X. Tong, “Facile synthesis of hierarchical ZnO: Tb3+ nanorod bundles and their optical and magnetic properties,” J. Phys. Chem. C 112(8), 2927–2933 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, “Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria,” J. Phys. D Appl. Phys. 42(22), 225305 (2009).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

Z. Chen, X. X. Li, N. Chen, H. Wang, G. P. Du, and A. Y. M. Suen, “Effect of annealing on photoluminescence of blue-emitting ZnO nanoparticles by sol–gel method,” J. Sol-Gel Sci. Technol. 62(2), 252–258 (2012).
[Crossref]

J. Solid State Chem. (1)

L. S. Panchakarla, M. A. Shah, A. Govindaraj, and C. N. R. Rao, “A simple method to prepare ZnO and Al (OH)3 nanorods by the reaction of the metals with liquid water,” J. Solid State Chem. 180(11), 3106–3110 (2007).
[Crossref]

Nanoscale Res. Lett. (1)

S. Vempati, J. Mitra, and P. Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore,” Nanoscale Res. Lett. 7(1), 470 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

V. V. Ursaki, I. M. Tiginyanu, V. V. Zalamai, E. V. Rusu, G. A. Emelchenko, V. M. Masalov, and E. N. Samarov, “Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers,” Phys. Rev. B 70(15), 155204 (2004).
[Crossref]

Phys. Status Solidi (1)

R. Hauschild, H. Priller, M. Decker, J. Brückner, H. Kalt, and C. Klingshirn, “Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO,” Phys. Status Solidi 3(4), 976–979 (2006).
[Crossref]

Physica B (1)

J. Das, S. K. Pradhan, D. R. Sahu, D. K. Mishra, S. N. Sarangi, B. B. Nayak, S. Verma, and B. Roul, “Micro-Raman and XPS studies of pure ZnO ceramics,” Physica B 405(10), 2492–2497 (2010).
[Crossref]

Small (1)

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[Crossref] [PubMed]

Solid State Commun. (1)

J. I. Jang, S. Park, N. L. Frazer, J. B. Ketterson, S. Lee, B. K. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152(14), 1241–1243 (2012).
[Crossref]

Surf. Sci. (2)

T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, and Y. Yamaguchi, “Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film,” Surf. Sci. 448(2–3), 101–107 (2000).
[Crossref]

J. P. S. Badyal, X. K. Zhang, and R. M. Lambert, “A model oxide catalyst system for the activation of methane: lithium-doped NiO on Ni(111),” Surf. Sci. 225(1–2), L15–L19 (1990).
[Crossref]

Other (1)

D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley & Sons, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 SEM images of the ZnO NRs prepared by using the hydrothermal method at different temperatures of (a) 100°C, (b) 120°C, (c) 140°C, (d) 160°C and (e) 180°C and the coprecipitation method at 180°C (f). The length of the scale bar is 0.5 μm.
Fig. 2
Fig. 2 XRD patterns measured for the ZnO NRs synthesized at different temperatures. (a) 100°C, (b) 120°C, (c) 140°C, (d) 160°C, and (e) 180°C.
Fig. 3
Fig. 3 Normalized PL spectra under the 325-nm excitation for the ZnO NRs synthesized at different temperatures. The PL spectrum of the ZnO NRs prepared by using the coprecipitation method is also provided for comparison.
Fig. 4
Fig. 4 Survey scan XPS spectrum for the ZnO NRs prepared at 180°C.
Fig. 5
Fig. 5 Comparison of the XPS spectra of O 1s in the ZnO NRs prepared at (a) 100°C, (b) 140°C, and (c) 180°C. The thick solid curves are the measured spectra while the thin solid curves, the dashed curves, and the dot-dashed curves are the Gaussian fittings of the spectra.
Fig. 6
Fig. 6 Fourier transform infrared spectra measured for the ZnO NRs synthesized at different temperatures. For clarity, the spectra are vertically shifted.
Fig. 7
Fig. 7 XPS spectra of Zn 2p in the ZnO NRs prepared at different temperatures of (a) 100°C, (b) 140°C, and (c) 180°C.
Fig. 8
Fig. 8 Auger signals of Zn LMM measured for the ZnO NRs prepared at different temperatures of (a) 100°C, (b) 140°C, and (c) 180°C. The thick solid curves are the measured spectra while the thin solid curves, the dashed curves, and the dot-dashed curves are the Gaussian fittings of the spectra.
Fig. 9
Fig. 9 Comparison of the MPL spectra of the ZnO NRs prepared by using the hydrothermal method at 100°C and 180°C and the coprecipitation method at 180°C.
Fig. 10
Fig. 10 Evolution of the MPL spectrum with increasing excitation intensity for the ZnO NRs prepared 180°C. At each excitation intensity, the fitting of the spectrum with multiple Gaussian peaks is presented. The inset shows the photo of the excitation spot taken from the eyepiece of the microscope.
Fig. 11
Fig. 11 Excitation intensity dependence of the luminescence peak intensity (a), peak wavelength (b) and bandwidth (c) for the first two emissions originating from the free excitons and Zni.
Fig. 12
Fig. 12 Evolution of the emission spectrum of the ZnO NRs with increasing excitation intensity observed by using objective lenses with different NAs. (a) NA = 0.65, I1 = 35 GW/cm2, I2 = 58 GW/cm2, I3 = 81 GW/cm2, I4 = 104 GW/cm2, I5 = 127 GW/cm2, I6 = 150 GW/cm2, (b) NA = 0.85, I1 = 138 GW/cm2, I2 = 231 GW/cm2, I3 = 323 GW/cm2, I4 = 415 GW/cm2, I5 = 508 GW/cm2, I6 = 600 GW/cm2 and (c) NA = 1.4, I1 = 550 GW/cm2, I2 = 917 GW/cm2, I3 = 1284 GW/cm2, I4 = 1651 GW/cm2, I5 = 2018 GW/cm2, I6 = 2385 GW/cm2.
Fig. 13
Fig. 13 (a) Schematic showing the closely packed ZnO NR and the one- and two-dimensional intensity distribution of the focused laser beam. (b) Calculated temperature distributions for the array of ZnO NRs induced by the focused laser beams with different diameters of D = 0.5, 2, and 4 μm. (c) Dependence of the maximum temperature achieved in the array of ZnO NRs on the excitation intensity calculated for the focused laser beams with different diameters.

Metrics