Abstract

The propagation of a high-power flat-topped Gaussian beam, which is modulated by three parallel wirelike scatterers, passing through a downstream Kerr medium slab and free spaces is investigated. A new phenomenon is found that a kind of intense fringe with intensity several times that of the incident beam can be formed in a plane downstream the Kerr medium. This kind of intense fringe is another result in the propagation process of nonlinear imaging and it locates scores of centimeters downstream the predicted hot image plane. Moreover, the intensity of this fringe can achieve the magnitude of that of hot image in corresponding single-scatterer case, and this phenomenon can arise only under certain conditions. As for the corresponding hot images, they are also formed but largely suppressed. The cause of the formation of such an intense fringe is analyzed and found related to interference in the free space downstream the Kerr medium. Moreover, the ways it is influenced by some important factors such as the wavelength of incident beam and the properties of scatterers and Kerr medium are discussed, and some important properties and relations are revealed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks

Youwen Wang, Shuangchun Wen, Kaiming You, Zhixiang Tang, Jianqin Deng, Lifu Zhang, and Dianyuan Fan
Appl. Opt. 47(30) 5668-5681 (2008)

Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss

Youwen Wang, Shuangchun Wen, Lifu Zhang, Yonghua Hu, and Dianyuan Fan
Appl. Opt. 47(8) 1152-1163 (2008)

Structural evolution of axial intensity distribution during hot image formation

Kewei You, Yanli Zhang, Xuejie Zhang, Mingying Sun, and Jianqiang Zhu
Appl. Opt. 56(16) 4835-4842 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
    [Crossref]
  2. R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-focusing: Past and Present (Springer, 2009).
  3. O. Kosareva, J.-F. Daigle, N. Panov, T. Wang, S. Hosseini, S. Yuan, G. Roy, V. Makarov, and S. L. Chin, “Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing?” Opt. Lett. 36(7), 1035–1037 (2011).
    [Crossref] [PubMed]
  4. M. D. Feit and J. A. Fleck., “Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,” J. Opt. Soc. Am. B 5(3), 633–640 (1988).
    [Crossref]
  5. J. T. Hunt, K. R. Manes, and P. A. Renard, “Hot images from obscurations,” Appl. Opt. 32(30), 5973–5982 (1993).
    [Crossref] [PubMed]
  6. C. C. Widmayer, D. Milam, and S. P. deSzoeke, “Nonlinear formation of holographic images of obscurations in laser beams,” Appl. Opt. 36(36), 9342–9347 (1997).
    [Crossref] [PubMed]
  7. C. C. Widmayer, M. R. Nickels, and D. Milam, “Nonlinear holographic imaging of phase errors,” Appl. Opt. 37(21), 4801–4805 (1998).
    [Crossref] [PubMed]
  8. W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6(1), 7–14, UCRL-LR-105821–96–1 (Lawrence Livermore National Laboratory, 1996).
  9. L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Wuli Xuebao 53(7), 2175–2179 (2004).
  10. A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83(3), 031802 (2011).
    [Crossref]
  11. C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
    [Crossref]
  12. Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47(1), 194–198 (2009).
    [Crossref]
  13. Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19(11), 114207 (2010).
    [Crossref]
  14. Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47(8), 1152–1163 (2008).
    [Crossref] [PubMed]
  15. Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Wuli Xuebao 56(10), 5855–5861 (2007).
  16. L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236(4-6), 343–348 (2004).
    [Crossref]
  17. Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26(2), 024205 (2009).
    [Crossref]
  18. T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49(7), 972–978 (2011).
    [Crossref]
  19. Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47(30), 5668–5681 (2008).
    [Crossref] [PubMed]
  20. Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47(11), 1199–1204 (2009).
    [Crossref]
  21. T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46(16), 3205–3209 (2007).
    [Crossref] [PubMed]
  22. Y. Zhang, J. Zhang, Z. Jiao, M. Sun, D. Liu, and J. Zhu, “Study on impact of spatial filter on a hot image through medium with gain,” Optik (Stuttg.) 126(11-12), 1209–1212 (2015).
    [Crossref]
  23. L. Xie, J. Zhao, and F. Jing, “Second-order hot image from a scatterer in high-power laser systems,” Appl. Opt. 44(13), 2553–2557 (2005).
    [Crossref] [PubMed]
  24. Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
    [Crossref]
  25. D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47(11), 114202 (2008).
    [Crossref]
  26. Y. Hu, J. Huang, X. Peng, and J. Xu, “Nonlinear imaging properties under the coeffect of two wirelike opaque scatterers,” J. Opt. Soc. Am. B 30(2), 349–354 (2013).
    [Crossref]
  27. J. Xu, Y. Hu, and H. Zhuo, “Computer simulation study of nonlinear imaging properties for two phase-typed scatterers,” J. Opt. Soc. Am. A 28(12), 2459–2464 (2011).
    [Crossref] [PubMed]
  28. J. Huang and Y. Hu, “Nonlinear imaging properties of two parallel gain-typed wirelike scatterers,” Proc. SPIE 8551, 855106 (2012).
    [Crossref]
  29. Y. Hu, J. Huang, and X. Peng, “Nonlinear formation of hot image and double intense image for gain-typed wirelike scatterers,” Opt. Laser Technol. 56, 131–136 (2014).
    [Crossref]

2015 (1)

Y. Zhang, J. Zhang, Z. Jiao, M. Sun, D. Liu, and J. Zhu, “Study on impact of spatial filter on a hot image through medium with gain,” Optik (Stuttg.) 126(11-12), 1209–1212 (2015).
[Crossref]

2014 (1)

Y. Hu, J. Huang, and X. Peng, “Nonlinear formation of hot image and double intense image for gain-typed wirelike scatterers,” Opt. Laser Technol. 56, 131–136 (2014).
[Crossref]

2013 (1)

2012 (1)

J. Huang and Y. Hu, “Nonlinear imaging properties of two parallel gain-typed wirelike scatterers,” Proc. SPIE 8551, 855106 (2012).
[Crossref]

2011 (4)

2010 (1)

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19(11), 114207 (2010).
[Crossref]

2009 (4)

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26(2), 024205 (2009).
[Crossref]

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
[Crossref]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47(1), 194–198 (2009).
[Crossref]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47(11), 1199–1204 (2009).
[Crossref]

2008 (3)

2007 (3)

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Wuli Xuebao 56(10), 5855–5861 (2007).

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[Crossref]

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46(16), 3205–3209 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (2)

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236(4-6), 343–348 (2004).
[Crossref]

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Wuli Xuebao 53(7), 2175–2179 (2004).

2000 (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

1998 (1)

1997 (1)

1993 (1)

1988 (1)

Barsi, C.

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
[Crossref]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

Chen, L.

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26(2), 024205 (2009).
[Crossref]

Chin, S. L.

Daigle, J.-F.

Deng, J.

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26(2), 024205 (2009).
[Crossref]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47(1), 194–198 (2009).
[Crossref]

Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47(30), 5668–5681 (2008).
[Crossref] [PubMed]

deSzoeke, S. P.

Fan, D.

Feit, M. D.

Fleck, J. A.

Fleischer, J. W.

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
[Crossref]

Fu, X.

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Wuli Xuebao 56(10), 5855–5861 (2007).

Goy, A.

A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83(3), 031802 (2011).
[Crossref]

Hosseini, S.

Hu, Y.

Y. Hu, J. Huang, and X. Peng, “Nonlinear formation of hot image and double intense image for gain-typed wirelike scatterers,” Opt. Laser Technol. 56, 131–136 (2014).
[Crossref]

Y. Hu, J. Huang, X. Peng, and J. Xu, “Nonlinear imaging properties under the coeffect of two wirelike opaque scatterers,” J. Opt. Soc. Am. B 30(2), 349–354 (2013).
[Crossref]

J. Huang and Y. Hu, “Nonlinear imaging properties of two parallel gain-typed wirelike scatterers,” Proc. SPIE 8551, 855106 (2012).
[Crossref]

J. Xu, Y. Hu, and H. Zhuo, “Computer simulation study of nonlinear imaging properties for two phase-typed scatterers,” J. Opt. Soc. Am. A 28(12), 2459–2464 (2011).
[Crossref] [PubMed]

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19(11), 114207 (2010).
[Crossref]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47(1), 194–198 (2009).
[Crossref]

Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47(8), 1152–1163 (2008).
[Crossref] [PubMed]

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Wuli Xuebao 56(10), 5855–5861 (2007).

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[Crossref]

Huang, J.

Y. Hu, J. Huang, and X. Peng, “Nonlinear formation of hot image and double intense image for gain-typed wirelike scatterers,” Opt. Laser Technol. 56, 131–136 (2014).
[Crossref]

Y. Hu, J. Huang, X. Peng, and J. Xu, “Nonlinear imaging properties under the coeffect of two wirelike opaque scatterers,” J. Opt. Soc. Am. B 30(2), 349–354 (2013).
[Crossref]

J. Huang and Y. Hu, “Nonlinear imaging properties of two parallel gain-typed wirelike scatterers,” Proc. SPIE 8551, 855106 (2012).
[Crossref]

Hunt, J. T.

Jiao, Z.

Y. Zhang, J. Zhang, Z. Jiao, M. Sun, D. Liu, and J. Zhu, “Study on impact of spatial filter on a hot image through medium with gain,” Optik (Stuttg.) 126(11-12), 1209–1212 (2015).
[Crossref]

Jing, F.

L. Xie, J. Zhao, and F. Jing, “Second-order hot image from a scatterer in high-power laser systems,” Appl. Opt. 44(13), 2553–2557 (2005).
[Crossref] [PubMed]

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236(4-6), 343–348 (2004).
[Crossref]

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Wuli Xuebao 53(7), 2175–2179 (2004).

Kosareva, O.

Krausz, F.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

Li, D.

T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49(7), 972–978 (2011).
[Crossref]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47(11), 1199–1204 (2009).
[Crossref]

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47(11), 114202 (2008).
[Crossref]

Liu, D.

Y. Zhang, J. Zhang, Z. Jiao, M. Sun, D. Liu, and J. Zhu, “Study on impact of spatial filter on a hot image through medium with gain,” Optik (Stuttg.) 126(11-12), 1209–1212 (2015).
[Crossref]

Makarov, V.

Manes, K. R.

Milam, D.

Nickels, M. R.

Panov, N.

Peng, H.

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Wuli Xuebao 53(7), 2175–2179 (2004).

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236(4-6), 343–348 (2004).
[Crossref]

Peng, T.

T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49(7), 972–978 (2011).
[Crossref]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47(11), 1199–1204 (2009).
[Crossref]

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47(11), 114202 (2008).
[Crossref]

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46(16), 3205–3209 (2007).
[Crossref] [PubMed]

Peng, X.

Y. Hu, J. Huang, and X. Peng, “Nonlinear formation of hot image and double intense image for gain-typed wirelike scatterers,” Opt. Laser Technol. 56, 131–136 (2014).
[Crossref]

Y. Hu, J. Huang, X. Peng, and J. Xu, “Nonlinear imaging properties under the coeffect of two wirelike opaque scatterers,” J. Opt. Soc. Am. B 30(2), 349–354 (2013).
[Crossref]

Psaltis, D.

A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83(3), 031802 (2011).
[Crossref]

Renard, P. A.

Roy, G.

Su, J.

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46(16), 3205–3209 (2007).
[Crossref] [PubMed]

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Wuli Xuebao 53(7), 2175–2179 (2004).

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236(4-6), 343–348 (2004).
[Crossref]

Sun, M.

Y. Zhang, J. Zhang, Z. Jiao, M. Sun, D. Liu, and J. Zhu, “Study on impact of spatial filter on a hot image through medium with gain,” Optik (Stuttg.) 126(11-12), 1209–1212 (2015).
[Crossref]

Tang, Z.

Wan, W.

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
[Crossref]

Wang, T.

Wang, W.

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Wuli Xuebao 53(7), 2175–2179 (2004).

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236(4-6), 343–348 (2004).
[Crossref]

Wang, Y.

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19(11), 114207 (2010).
[Crossref]

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26(2), 024205 (2009).
[Crossref]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47(1), 194–198 (2009).
[Crossref]

Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47(8), 1152–1163 (2008).
[Crossref] [PubMed]

Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47(30), 5668–5681 (2008).
[Crossref] [PubMed]

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Wuli Xuebao 56(10), 5855–5861 (2007).

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[Crossref]

Wei, H.

Wen, S.

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19(11), 114207 (2010).
[Crossref]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47(1), 194–198 (2009).
[Crossref]

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26(2), 024205 (2009).
[Crossref]

Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47(30), 5668–5681 (2008).
[Crossref] [PubMed]

Y. Wang, S. Wen, L. Zhang, Y. Hu, and D. Fan, “Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss,” Appl. Opt. 47(8), 1152–1163 (2008).
[Crossref] [PubMed]

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[Crossref]

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Wuli Xuebao 56(10), 5855–5861 (2007).

Widmayer, C. C.

Xie, L.

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46(16), 3205–3209 (2007).
[Crossref] [PubMed]

L. Xie, J. Zhao, and F. Jing, “Second-order hot image from a scatterer in high-power laser systems,” Appl. Opt. 44(13), 2553–2557 (2005).
[Crossref] [PubMed]

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236(4-6), 343–348 (2004).
[Crossref]

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Wuli Xuebao 53(7), 2175–2179 (2004).

Xu, J.

Ye, Z.

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47(11), 1199–1204 (2009).
[Crossref]

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47(11), 114202 (2008).
[Crossref]

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46(16), 3205–3209 (2007).
[Crossref] [PubMed]

You, K.

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26(2), 024205 (2009).
[Crossref]

Y. Wang, S. Wen, K. You, Z. Tang, J. Deng, L. Zhang, and D. Fan, “Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks,” Appl. Opt. 47(30), 5668–5681 (2008).
[Crossref] [PubMed]

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Wuli Xuebao 56(10), 5855–5861 (2007).

Yuan, S.

Zhang, J.

Y. Zhang, J. Zhang, Z. Jiao, M. Sun, D. Liu, and J. Zhu, “Study on impact of spatial filter on a hot image through medium with gain,” Optik (Stuttg.) 126(11-12), 1209–1212 (2015).
[Crossref]

Zhang, L.

Zhang, Y.

Y. Zhang, J. Zhang, Z. Jiao, M. Sun, D. Liu, and J. Zhu, “Study on impact of spatial filter on a hot image through medium with gain,” Optik (Stuttg.) 126(11-12), 1209–1212 (2015).
[Crossref]

Zhao, J.

T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49(7), 972–978 (2011).
[Crossref]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47(11), 1199–1204 (2009).
[Crossref]

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47(11), 114202 (2008).
[Crossref]

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46(16), 3205–3209 (2007).
[Crossref] [PubMed]

T. Peng, J. Zhao, L. Xie, Z. Ye, H. Wei, J. Su, and J. Zhao, “Simulation analysis of the restraining effect of a spatial filter on a hot image,” Appl. Opt. 46(16), 3205–3209 (2007).
[Crossref] [PubMed]

L. Xie, J. Zhao, and F. Jing, “Second-order hot image from a scatterer in high-power laser systems,” Appl. Opt. 44(13), 2553–2557 (2005).
[Crossref] [PubMed]

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236(4-6), 343–348 (2004).
[Crossref]

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Wuli Xuebao 53(7), 2175–2179 (2004).

Zhu, J.

Y. Zhang, J. Zhang, Z. Jiao, M. Sun, D. Liu, and J. Zhu, “Study on impact of spatial filter on a hot image through medium with gain,” Optik (Stuttg.) 126(11-12), 1209–1212 (2015).
[Crossref]

Zhuo, H.

Appl. Opt. (7)

Chin. Phys. B (1)

Y. Hu, Y. Wang, S. Wen, and D. Fan, “Nonlinear images of scatterers in chirped pulsed laser beams,” Chin. Phys. B 19(11), 114207 (2010).
[Crossref]

Chin. Phys. Lett. (1)

Y. Wang, J. Deng, L. Chen, S. Wen, and K. You, “Formation of hot images in laser beams through a self-defocusing Kerr medium slab,” Chin. Phys. Lett. 26(2), 024205 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

C. Barsi, W. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3(4), 211–215 (2009).
[Crossref]

Opt. Commun. (1)

L. Xie, F. Jing, J. Zhao, J. Su, W. Wang, and H. Peng, “Nonlinear hot-image formation of an intense laser beam in media with gain and loss,” Opt. Commun. 236(4-6), 343–348 (2004).
[Crossref]

Opt. Eng. (1)

D. Li, J. Zhao, T. Peng, and Z. Ye, “Hot images induced by arrayed mechanical defects in high-power laser system with cascaded medium,” Opt. Eng. 47(11), 114202 (2008).
[Crossref]

Opt. Laser Technol. (1)

Y. Hu, J. Huang, and X. Peng, “Nonlinear formation of hot image and double intense image for gain-typed wirelike scatterers,” Opt. Laser Technol. 56, 131–136 (2014).
[Crossref]

Opt. Lasers Eng. (3)

T. Peng, J. Zhao, and D. Li, “Theoretical analysis of hot-image effect in a high-power laser system with cascaded nonlinear medium,” Opt. Lasers Eng. 49(7), 972–978 (2011).
[Crossref]

Z. Ye, J. Zhao, T. Peng, and D. Li, “Evolution of the hot image effect in high-power laser system with cascaded Kerr medium,” Opt. Lasers Eng. 47(11), 1199–1204 (2009).
[Crossref]

Y. Hu, Y. Wang, S. Wen, J. Deng, and D. Fan, “Hot images from phase defects in high-power broadband laser beams,” Opt. Lasers Eng. 47(1), 194–198 (2009).
[Crossref]

Opt. Lett. (1)

Optik (Stuttg.) (1)

Y. Zhang, J. Zhang, Z. Jiao, M. Sun, D. Liu, and J. Zhu, “Study on impact of spatial filter on a hot image through medium with gain,” Optik (Stuttg.) 126(11-12), 1209–1212 (2015).
[Crossref]

Phys. Rev. A (1)

A. Goy and D. Psaltis, “Digital reverse propagation in focusing Kerr media,” Phys. Rev. A 83(3), 031802 (2011).
[Crossref]

Proc. SPIE (2)

Y. Hu, Y. Wang, and S. Wen, “Formation of the second-order hot image in broadband laser systems,” Proc. SPIE 6823, 682310 (2007).
[Crossref]

J. Huang and Y. Hu, “Nonlinear imaging properties of two parallel gain-typed wirelike scatterers,” Proc. SPIE 8551, 855106 (2012).
[Crossref]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

Wuli Xuebao (2)

L. Xie, J. Zhao, J. Su, F. Jing, W. Wang, and H. Peng, “Theoretical analysis of hot image effect from phase scatterer,” Wuli Xuebao 53(7), 2175–2179 (2004).

Y. Wang, Y. Hu, S. Wen, K. You, and X. Fu, “Study of nonlinear hot image effect of Gaussian optical beams,” Wuli Xuebao 56(10), 5855–5861 (2007).

Other (2)

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-focusing: Past and Present (Springer, 2009).

W. H. Williams, K. R. Manes, J. T. Hunt, P. A. Renard, D. Eimerl, and D. Milam, “Modeling of self-focusing experiments by beam propagation codes,” ICF Quart. Rep. 6(1), 7–14, UCRL-LR-105821–96–1 (Lawrence Livermore National Laboratory, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The optical path model.
Fig. 2
Fig. 2 The variation of intensity with the x axis at y = 0 of the beam modulated by the scatterers.
Fig. 3
Fig. 3 The variation of Imax with propagation distance. Im, Im,1 and Im,0 are the maximum intensities in beam profile for the triple-scatterer case, the single-scatterer case and the unperturbed super-Gaussian beam case, respectively.
Fig. 4
Fig. 4 Beam intensity profile at z = 2.2m. (a) and (b) are for the triple-scatterer case, (c) is for the corresponding single-scatterer case.
Fig. 5
Fig. 5 Beam intensity profile at z = 2.55m. (a) and (b) are for the triple-scatterer case, (c) is for the corresponding single-scatterer case.
Fig. 6
Fig. 6 The evolution of light intensity envelope. (a) is for the triple-scatterer case, (b) is for the corresponding single-scatterer case.
Fig. 7
Fig. 7 The influence of beam wavelength. λ chanes from 800nm to 1600nm with a 25nm step length.
Fig. 8
Fig. 8 The influence of Kerr medium thickness under B = 2 in both the triple-scatterer case and the corresponding single-scatterer case. L changes from 20mm to 400mm with a 20mm step length.
Fig. 9
Fig. 9 The influence of B-integral value. B changes from 0.5 to 3.5 with a step length 0.1.
Fig. 10
Fig. 10 The influence of object distance. d0 changes from 0.5m to 1.5m with a step length 0.05m.
Fig. 11
Fig. 11 The influence of (a) the intensity modulation depth and (b) width of scatterers.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T={ t in the area of scatterers 1 out of the area of scatterers ,
E= E 0 exp[ 1 2 ( x 2 + y 2 r 0 2 ) m ],
A z =i 1 2 k 1 2 A,
A z =i 1 2 k 2 2 A+i B 0 | A | 2 A,
d 2r = z 2 2 d 0 L,

Metrics