Abstract

We present a microfluidic chip in Polymethyl methacrylate (PMMA) for optical trapping of particles in an 80µm wide microchannel using two counterpropagating single-mode beams. The trapping fibers are separated from the sample fluid by 70µm thick polymer walls. We calculate the optical forces that act on particles flowing in the microchannel using wave optics in combination with non-sequential ray-tracing and further mathematical processing. Our results are compared with a theoretical model and the Mie theory. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we show the trapping capabilities of the hot embossed chip by trapping spherical beads with a diameter of 6µm, 8µm and 10µm and use the power spectrum analysis of the trapped particle displacements to characterize the trap strength.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical tweezers for trapping in a microfluidic environment

R. Kampmann, S. Sinzinger, and J. G. Korvink
Appl. Opt. 57(20) 5733-5742 (2018)

On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap

Martijn Boerkamp, Thijs van Leest, Jeroen Heldens, Arne Leinse, Marcel Hoekman, Rene Heideman, and Jacob Caro
Opt. Express 22(25) 30528-30537 (2014)

Stability and instability for low refractive-index-contrast particle trapping in a dual-beam optical trap

Alison Huff, Charles N. Melton, Linda S. Hirst, and Jay E. Sharping
Biomed. Opt. Express 6(10) 3812-3819 (2015)

References

  • View by:
  • |
  • |
  • |

  1. U. Neugebauer, S. Dochow, C. Krafft, T. Bocklitz, J. H. Clement, and J. Popp, “Diagnostics of tumor cells by combination of raman spectroscopy and microfluidics,” Proc. SPIE8087, 1–11 (2011).
  2. D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
    [Crossref]
  3. R. Wilson, S. A. Bowden, J. Parnell, and J. M. Cooper, “Signal enhancement of surface enhanced raman scattering and surface enhanced resonance raman scattering using in situ colloidal synthesis in microfluidics,” Anal. Chem. 82, 2119–2123 (2010).
    [Crossref] [PubMed]
  4. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  5. K. C. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  6. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [Crossref] [PubMed]
  7. F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
    [Crossref] [PubMed]
  8. X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
    [Crossref] [PubMed]
  9. G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
    [Crossref] [PubMed]
  10. M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, “A microfluidic-based hydrodynamic trap: design and implementation,” Lab Chip 11, 1786–1794 (2011).
    [Crossref] [PubMed]
  11. P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
    [Crossref]
  12. K. Ono, S. Kaneda, T. Shiraishi, and T. Fujii, “Optofluidic tweezer on a chip,” Biomicrofluidics 4, 043012 (2010).
    [Crossref]
  13. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat Photon 1, 723–727 (2007).
    [Crossref]
  14. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).
  15. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
    [Crossref] [PubMed]
  16. H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99, 061107 (2011).
    [Crossref]
  17. T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
    [Crossref] [PubMed]
  18. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
    [Crossref] [PubMed]
  19. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B 20, 1568–1574 (2003).
    [Crossref]
  20. M. Kreysing, T. Kießling, C. Fritsch, A. Dietrich, J. Guck, and J. A. Käs, “The optical cell rotator,” Opt. Express 16, 16984–16992 (2008).
    [Crossref] [PubMed]
  21. B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
    [Crossref] [PubMed]
  22. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
    [Crossref] [PubMed]
  23. N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3, 2658–2668 (2012).
    [Crossref] [PubMed]
  24. S. J. Cran-McGreehin, K. Dholakia, and T. F. Krauss, “Monolithic integration of microfluidic channels and semiconductor lasers,” Opt. Express 14, 7723–7729 (2006).
    [Crossref] [PubMed]
  25. S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
    [Crossref] [PubMed]
  26. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, “Dual beam fibre trap for raman micro-spectroscopy of single cells,” Opt. Express 14, 5779–5791 (2006).
    [Crossref] [PubMed]
  27. R. A. Flynn, B. Shao, M. Chachisvilis, M. Ozkan, and S. C. Esener, “Counter-propagating optical trapping system for size and refractive index measurement of microparticles,” Biosens. Bioelectron. 21, 1029–1036 (2006).
    [Crossref]
  28. M.-T. Wei, K.-T. Yang, A. Karmenyan, and A. Chiou, “Three-dimensional optical force field on a chinese hamster ovary cell in a fiber-optical dual-beam trap,” Opt. Express 14, 3056–3064 (2006).
    [Crossref] [PubMed]
  29. E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
    [Crossref]
  30. K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176, 43–47 (2000).
    [Crossref]
  31. Y. Liu and M. Yu, “Multiple traps created with an inclined dual-fiber system,” Opt. Express 17, 21680–21690 (2009).
    [Crossref] [PubMed]
  32. Y. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17, 13624–13638 (2009).
    [Crossref] [PubMed]
  33. T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
    [Crossref]
  34. T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58, 528–544 (2011).
    [Crossref]
  35. L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
    [Crossref]
  36. E. Aspnes, T. D. Milster, and K. Visscher, “Optical force model based on sequential ray tracing,” Appl. Opt. 48, 1642–1650 (2009).
    [Crossref] [PubMed]
  37. I. Breault Research Organization, “Asap technical guide, waveoptics in asap.” (2004).
  38. E. Sidick, S. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36, 6423–6433 (1997).
    [Crossref]
  39. S. H. Simpson and S. Hanna, “Numerical calculation of interparticle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23, 1419–1431 (2006).
    [Crossref]
  40. J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).
    [Crossref]
  41. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
    [Crossref]
  42. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics (SpringerHeidelberg, 1985).

2015 (1)

D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
[Crossref]

2014 (1)

P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
[Crossref]

2013 (2)

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
[Crossref] [PubMed]

2012 (2)

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3, 2658–2668 (2012).
[Crossref] [PubMed]

2011 (7)

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58, 528–544 (2011).
[Crossref]

L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
[Crossref]

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99, 061107 (2011).
[Crossref]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, “A microfluidic-based hydrodynamic trap: design and implementation,” Lab Chip 11, 1786–1794 (2011).
[Crossref] [PubMed]

2010 (2)

K. Ono, S. Kaneda, T. Shiraishi, and T. Fujii, “Optofluidic tweezer on a chip,” Biomicrofluidics 4, 043012 (2010).
[Crossref]

R. Wilson, S. A. Bowden, J. Parnell, and J. M. Cooper, “Signal enhancement of surface enhanced raman scattering and surface enhanced resonance raman scattering using in situ colloidal synthesis in microfluidics,” Anal. Chem. 82, 2119–2123 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

2007 (4)

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat Photon 1, 723–727 (2007).
[Crossref]

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
[Crossref] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[Crossref] [PubMed]

2006 (5)

2005 (1)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

2004 (2)

K. C. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

2003 (1)

2000 (1)

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176, 43–47 (2000).
[Crossref]

1997 (1)

1995 (1)

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[Crossref]

1994 (2)

1993 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Albert, J.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Aspnes, E.

Atsuta, K.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176, 43–47 (2000).
[Crossref]

Baldini, E.

L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
[Crossref]

Bellini, N.

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3, 2658–2668 (2012).
[Crossref] [PubMed]

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Bernet, S.

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Block, S.

K. C. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

Bocklitz, T.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

U. Neugebauer, S. Dochow, C. Krafft, T. Bocklitz, J. H. Clement, and J. Popp, “Diagnostics of tumor cells by combination of raman spectroscopy and microfluidics,” Proc. SPIE8087, 1–11 (2011).

Boer, G.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
[Crossref] [PubMed]

Bowden, S. A.

R. Wilson, S. A. Bowden, J. Parnell, and J. M. Cooper, “Signal enhancement of surface enhanced raman scattering and surface enhanced resonance raman scattering using in situ colloidal synthesis in microfluidics,” Anal. Chem. 82, 2119–2123 (2010).
[Crossref] [PubMed]

Bragheri, F.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3, 2658–2668 (2012).
[Crossref] [PubMed]

L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat Photon 1, 723–727 (2007).
[Crossref]

Brodie, G. W.

P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
[Crossref]

Brzobohatý, O.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Caro, J.

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
[Crossref] [PubMed]

Chachisvilis, M.

R. A. Flynn, B. Shao, M. Chachisvilis, M. Ozkan, and S. C. Esener, “Counter-propagating optical trapping system for size and refractive index measurement of microparticles,” Biosens. Bioelectron. 21, 1029–1036 (2006).
[Crossref]

Chen, S.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Chiou, A.

Cižmár, T.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Clement, J. H.

U. Neugebauer, S. Dochow, C. Krafft, T. Bocklitz, J. H. Clement, and J. Popp, “Diagnostics of tumor cells by combination of raman spectroscopy and microfluidics,” Proc. SPIE8087, 1–11 (2011).

Cochran, S.

P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
[Crossref]

Cojoc, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

Collins, S.

Constable, A.

Cooper, J. M.

R. Wilson, S. A. Bowden, J. Parnell, and J. M. Cooper, “Signal enhancement of surface enhanced raman scattering and surface enhanced resonance raman scattering using in situ colloidal synthesis in microfluidics,” Anal. Chem. 82, 2119–2123 (2010).
[Crossref] [PubMed]

Costa, K. D.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Cran-McGreehin, S. J.

Cristiani, I.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3, 2658–2668 (2012).
[Crossref] [PubMed]

L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat Photon 1, 723–727 (2007).
[Crossref]

De Angelis, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat Photon 1, 723–727 (2007).
[Crossref]

De Coster, D.

D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
[Crossref]

Delacrtaz, G.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
[Crossref] [PubMed]

Demore, C. E. M.

P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
[Crossref]

Dholakia, K.

Di Fabrizio, E.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat Photon 1, 723–727 (2007).
[Crossref]

Dietrich, A.

Dochow, S.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

U. Neugebauer, S. Dochow, C. Krafft, T. Bocklitz, J. H. Clement, and J. Popp, “Diagnostics of tumor cells by combination of raman spectroscopy and microfluidics,” Proc. SPIE8087, 1–11 (2011).

Ebert, S.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Erickson, D.

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Esener, S. C.

R. A. Flynn, B. Shao, M. Chachisvilis, M. Ozkan, and S. C. Esener, “Counter-propagating optical trapping system for size and refractive index measurement of microparticles,” Biosens. Bioelectron. 21, 1029–1036 (2006).
[Crossref]

Fabrizio, E. D.

L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
[Crossref]

Ferrara, L.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
[Crossref]

Flynn, R. A.

R. A. Flynn, B. Shao, M. Chachisvilis, M. Ozkan, and S. C. Esener, “Counter-propagating optical trapping system for size and refractive index measurement of microparticles,” Biosens. Bioelectron. 21, 1029–1036 (2006).
[Crossref]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Frick, M.

Fritsch, C.

Fujii, T.

K. Ono, S. Kaneda, T. Shiraishi, and T. Fujii, “Optofluidic tweezer on a chip,” Biomicrofluidics 4, 043012 (2010).
[Crossref]

Garcés-Chávez, V.

Gates, J. C.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99, 061107 (2011).
[Crossref]

Gouesbet, G.

Guck, J.

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3, 2658–2668 (2012).
[Crossref] [PubMed]

M. Kreysing, T. Kießling, C. Fritsch, A. Dietrich, J. Guck, and J. A. Käs, “The optical cell rotator,” Opt. Express 16, 16984–16992 (2008).
[Crossref] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Hanna, S.

Hashitsume, N.

R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics (SpringerHeidelberg, 1985).

Heckenberg, N. R.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58, 528–544 (2011).
[Crossref]

Henkel, T.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Herrington, C. S.

Ikeda, M.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176, 43–47 (2000).
[Crossref]

Jess, P. R. T.

Johann, R.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
[Crossref] [PubMed]

Kaneda, S.

K. Ono, S. Kaneda, T. Shiraishi, and T. Fujii, “Optofluidic tweezer on a chip,” Biomicrofluidics 4, 043012 (2010).
[Crossref]

Karmenyan, A.

Käs, J. A.

Kießling, T.

Kim, J.

Knoesen, A.

Kong, M.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Krafft, C.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

U. Neugebauer, S. Dochow, C. Krafft, T. Bocklitz, J. H. Clement, and J. Popp, “Diagnostics of tumor cells by combination of raman spectroscopy and microfluidics,” Proc. SPIE8087, 1–11 (2011).

Krauss, T. F.

Kreysing, M.

Ks, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Kubo, R.

R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics (SpringerHeidelberg, 1985).

La Rocca, R.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Li, R. A.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Liberale, C.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat Photon 1, 723–727 (2007).
[Crossref]

Lincoln, B.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Lipson, M.

Liu, Y.

Lock, J. A.

Loke, V. L.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58, 528–544 (2011).
[Crossref]

Loterie, D.

D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
[Crossref]

Lyons, E. R.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[Crossref]

MacDonald, M. P.

P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
[Crossref]

MartinezVazquez, R.

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

Mayer, G.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

Mazilu, M.

Merenda, F.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
[Crossref] [PubMed]

Mervis, J.

Milster, T. D.

Minzioni, P.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat Photon 1, 723–727 (2007).
[Crossref]

Missinne, J.

D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
[Crossref]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Mondello, C.

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

Nakata, T.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176, 43–47 (2000).
[Crossref]

Neugebauer, U.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

U. Neugebauer, S. Dochow, C. Krafft, T. Bocklitz, J. H. Clement, and J. Popp, “Diagnostics of tumor cells by combination of raman spectroscopy and microfluidics,” Proc. SPIE8087, 1–11 (2011).

Neuman, K. C.

K. C. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Nieminen, T. A.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58, 528–544 (2011).
[Crossref]

O’Mahoney, P.

P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
[Crossref]

Ono, K.

K. Ono, S. Kaneda, T. Shiraishi, and T. Fujii, “Optofluidic tweezer on a chip,” Biomicrofluidics 4, 043012 (2010).
[Crossref]

Osellame, R.

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, and G. Whyte, “Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher,” Biomed. Opt. Express 3, 2658–2668 (2012).
[Crossref] [PubMed]

Ottevaere, H.

D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
[Crossref]

Ozkan, M.

R. A. Flynn, B. Shao, M. Chachisvilis, M. Ozkan, and S. C. Esener, “Counter-propagating optical trapping system for size and refractive index measurement of microparticles,” Biosens. Bioelectron. 21, 1029–1036 (2006).
[Crossref]

Paie, P.

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

Parnell, J.

R. Wilson, S. A. Bowden, J. Parnell, and J. M. Cooper, “Signal enhancement of surface enhanced raman scattering and surface enhanced resonance raman scattering using in situ colloidal synthesis in microfluidics,” Anal. Chem. 82, 2119–2123 (2010).
[Crossref] [PubMed]

Paterson, L.

Perozziello, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

Popp, J.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

U. Neugebauer, S. Dochow, C. Krafft, T. Bocklitz, J. H. Clement, and J. Popp, “Diagnostics of tumor cells by combination of raman spectroscopy and microfluidics,” Proc. SPIE8087, 1–11 (2011).

Prentiss, M.

Pruneri, V.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99, 061107 (2011).
[Crossref]

Quidant, R.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99, 061107 (2011).
[Crossref]

Rajamanickam, V.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

Ramponi, R.

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

Ranka, M.

M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, “A microfluidic-based hydrodynamic trap: design and implementation,” Lab Chip 11, 1786–1794 (2011).
[Crossref] [PubMed]

Renaud, P.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
[Crossref] [PubMed]

Riches, A.

Righini, M.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99, 061107 (2011).
[Crossref]

Ritsch-Marte, M.

Rohner, J.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
[Crossref] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58, 528–544 (2011).
[Crossref]

Salath, R.-P.

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
[Crossref] [PubMed]

Sauer, F.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[Crossref] [PubMed]

Schinkinger, S.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Schmidt, B. S.

Schroeder, C. M.

M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, “A microfluidic-based hydrodynamic trap: design and implementation,” Lab Chip 11, 1786–1794 (2011).
[Crossref] [PubMed]

Shao, B.

R. A. Flynn, B. Shao, M. Chachisvilis, M. Ozkan, and S. C. Esener, “Counter-propagating optical trapping system for size and refractive index measurement of microparticles,” Biosens. Bioelectron. 21, 1029–1036 (2006).
[Crossref]

Shiraishi, T.

K. Ono, S. Kaneda, T. Shiraishi, and T. Fujii, “Optofluidic tweezer on a chip,” Biomicrofluidics 4, 043012 (2010).
[Crossref]

Sibbett, W.

Sidick, E.

Simpson, S. H.

Singer, W.

Sittipolkul, N.

M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, “A microfluidic-based hydrodynamic trap: design and implementation,” Lab Chip 11, 1786–1794 (2011).
[Crossref] [PubMed]

Smith, D.

Smith, P. G. R.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99, 061107 (2011).
[Crossref]

Sonek, G. J.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[Crossref]

Spalding, G. C.

P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
[Crossref]

Stilgoe, A. B.

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58, 528–544 (2011).
[Crossref]

Sun, D.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

Taguchi, K.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176, 43–47 (2000).
[Crossref]

Tanyeri, M.

M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, “A microfluidic-based hydrodynamic trap: design and implementation,” Lab Chip 11, 1786–1794 (2011).
[Crossref] [PubMed]

Thienpont, H.

D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
[Crossref]

Toda, M.

R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics (SpringerHeidelberg, 1985).

Travis, K.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[Crossref] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Van Erps, J.

D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
[Crossref]

van Leest, T.

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
[Crossref] [PubMed]

Vervaeke, M.

D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
[Crossref]

Visscher, K.

Wang, H.

P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
[Crossref]

Wang, X.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Wang, Z.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Wei, M.-T.

Whyte, G.

Wilson, R.

R. Wilson, S. A. Bowden, J. Parnell, and J. M. Cooper, “Signal enhancement of surface enhanced raman scattering and surface enhanced resonance raman scattering using in situ colloidal synthesis in microfluidics,” Anal. Chem. 82, 2119–2123 (2010).
[Crossref] [PubMed]

Wong, H. M. K.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99, 061107 (2011).
[Crossref]

Wottawah, F.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Yang, A. H.

Yang, K.-T.

Yu, M.

Zarinetchi, F.

Zemánek, P.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Anal. Chem. (1)

R. Wilson, S. A. Bowden, J. Parnell, and J. M. Cooper, “Signal enhancement of surface enhanced raman scattering and surface enhanced resonance raman scattering using in situ colloidal synthesis in microfluidics,” Anal. Chem. 82, 2119–2123 (2010).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[Crossref]

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99, 061107 (2011).
[Crossref]

Biomed. Microdevices (1)

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biomicrofluidics (1)

K. Ono, S. Kaneda, T. Shiraishi, and T. Fujii, “Optofluidic tweezer on a chip,” Biomicrofluidics 4, 043012 (2010).
[Crossref]

Biophys. J. (1)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Ks, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

R. A. Flynn, B. Shao, M. Chachisvilis, M. Ozkan, and S. C. Esener, “Counter-propagating optical trapping system for size and refractive index measurement of microparticles,” Biosens. Bioelectron. 21, 1029–1036 (2006).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

D. De Coster, D. Loterie, H. Ottevaere, M. Vervaeke, J. Van Erps, J. Missinne, and H. Thienpont, “Free-form optics enhanced confocal raman spectroscopy for optofluidic lab-on-chips,” IEEE J. Sel. Topics Quantum Electron. 21, 1–8 (2015).
[Crossref]

J. Mod. Opt. (1)

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58, 528–544 (2011).
[Crossref]

J. Opt. (1)

L. Ferrara, E. Baldini, P. Minzioni, F. Bragheri, C. Liberale, E. D. Fabrizio, and I. Cristiani, “Experimental study of the optical forces exerted by a gaussian beam within the rayleigh range,” J. Opt. 13, 075712 (2011).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Lab Chip (5)

F. Bragheri, P. Minzioni, R. MartinezVazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[Crossref] [PubMed]

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip 11, 1484–1490 (2011).
[Crossref] [PubMed]

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
[Crossref] [PubMed]

M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, “A microfluidic-based hydrodynamic trap: design and implementation,” Lab Chip 11, 1786–1794 (2011).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Nat Photon (1)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat Photon 1, 723–727 (2007).
[Crossref]

Opt. Commun. (1)

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176, 43–47 (2000).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Proc. SPIE (1)

P. O’Mahoney, G. W. Brodie, H. Wang, C. E. M. Demore, S. Cochran, G. C. Spalding, and M. P. MacDonald, “Hybrid optical and acoustic force based sorting,” Proc. SPIE 9164, 916421 (2014).
[Crossref]

Rev. Sci. Instrum. (3)

K. C. Neuman and S. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacrtaz, P. Renaud, and R.-P. Salath, “Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip,” Rev. Sci. Instrum. 78, 116101 (2007).
[Crossref] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Sci. Rep. (1)

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1–6 (2013).

Other (3)

U. Neugebauer, S. Dochow, C. Krafft, T. Bocklitz, J. H. Clement, and J. Popp, “Diagnostics of tumor cells by combination of raman spectroscopy and microfluidics,” Proc. SPIE8087, 1–11 (2011).

R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics (SpringerHeidelberg, 1985).

I. Breault Research Organization, “Asap technical guide, waveoptics in asap.” (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic drawing of a cross-section of the microchannel in the chip at the position of the fibers. A particle is trapped in the center of the channel by two divergent light beams emitted by the trapping fibers. The channel is sealed at the top by a second PMMA layer.
Fig. 2
Fig. 2 Each individual Gaussian beam is modeled by a base ray, two waist rays and two divergence rays. [37]
Fig. 3
Fig. 3 (a) Transverse trapping efficiency as a function of the x-displacement from the equilibrium position for beads with a radius of 3µm, 4µm, 5µm and 7.5µm for a fiber separation of 160 µm, calculated with our ray-tracing model (circles), the analytical solution (dashed line) and the T-matrix method (solid line); (b) Axial trapping efficiency as a function of the z-displacement from the equilibrium position for a bead with a radius of 3µm and for a fiber separation of 160 µm, calculated with our ray-tracing model (circles), the analytical solution (dashed line) and the T-matrix method (solid line).
Fig. 4
Fig. 4 Transverse (a) and axial (b) trapping efficiency as a function of respectively the x-and z-displacement of the bead from the equilibrium position for beads with a radius of 3µm, 4µm, 5µm and 7.5µm in a square microcapillary (dashed lines) and in the chip (solid lines)
Fig. 5
Fig. 5 Bead (R = 5µm) oscillations in the microcapillary at a fiber misalignment of 10µm. The trapping fibers are added for clarity.
Fig. 6
Fig. 6 Schematic of the double-sided hot embossing process of a 500µm thick PMMA layer (not on scale). The channel mold and the fiber mold are pressed in both sides of the polymer layer. A drawing of the hot embossed chip is shown on the right, together with the trapping fibers, the flow indication and the sealing layer. The notch is indicated by the black rectangle and a zoomed view is shown below the hot embossed chip. The overlap between the microchannel and the fiber grooves on the notch is indicated by the green hatched surfaces.
Fig. 7
Fig. 7 (a) Detailed side view of the fiber structure on the fiber mold, with the central notch which will impose the fiber separation in the chip. The narrowing tapers and one curved notch for respectively the alignment and prealignment of the fibers are also shown. Due to the mirror effect on the mold, the mirror image of the fiber structure can also be seen. Therefore, the black dashed line, indicating the mirror axis, is added for clarity purposes. (b) Detailed view of the microchannel. The entire chip cavity on the fiber and the channel molds, with the microstructures in the center, are shown in the corner of the figures.
Fig. 8
Fig. 8 (a) Cross section of the microchannel at the height of the fiber grooves; (b) Hot embossed PMMA layer.
Fig. 9
Fig. 9 Cross section of the microchannel at the height of the fiber grooves in a destructively milled chip. (left) no overlap; (right) approximately 10µm overlap. The red dashed line indicates the optical axis of the trapping beams. The beads in the microchannel are drawn for illustrative purposes.
Fig. 10
Fig. 10 (a) Hot embossed PMMA layer: the fiber grooves are oriented vertically and the microchannel horizontally. (b) Schematic drawing of a cross-section of the microchannel in the chip at the position of the fibers. In contrast to the schematic drawing shown in Fig. 1, a certain tilt is present in the channel edges.
Fig. 11
Fig. 11 Sealed optical trapping chip, as depicted in Fig. 6 on the right, with microcapillaries at both ends of the channel allowing particles to flow in the microchannel.
Fig. 12
Fig. 12 Simplified schematic of the setup (not on scale), showing the trapping fibers inserted in the chip and the detection path, consisting of a microscope objective (MO), a position-sensing detector (PSD) and a CCD camera.
Fig. 13
Fig. 13 (a) Power spectrum of the displacements of a 10µm diameter bead in the transverse x-direction (indicated by the coordinate system in Figs. 1 and 8) in the hot embossed optical trapping chip for a total trapping power of 130mW.
Fig. 14
Fig. 14 Transverse trap stiffness κx as a function of the total trapping power for a 6µm, 8µm and 10µm bead in a square capillary (dashed line) and the optical trapping chip (solid line).

Tables (1)

Tables Icon

Table 1 Overlap as a function of applied force and sample size

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q = c n l . P F
F = κ x
P = k B T π 2 γ 0 ( f c 2 + f 2 )
γ 0 = 6 π ρ v R
κ = 2 π f c γ 0

Metrics