Abstract

We demonstrate the direct excitation of a single TE mode in 25 nm thick planar crystalline silicon waveguide by photon tunneling from a layer of fluorescent dye molecules deposited by the Langmuir-Blodgett technique. The observed photon tunneling rate as a function of the dye-silicon separation is well fitted by a theoretical tunneling rate, which is obtained via a novel approach within the framework of quantum mechanics. We suggest that future ultrathin crystalline silicon solar cells can be made efficient by simple light trapping structures consisting of molecules on silicon.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-photon tunneling in photonic crystals with deep defect states

Igor I. Smolyaninov and Anatoly V. Zayats
Opt. Lett. 28(2) 93-95 (2003)

Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides

S. W. Leonard, H. M. van Driel, A. Birner, U. Gösele, and P. R. Villeneuve
Opt. Lett. 25(20) 1550-1552 (2000)

Photon-assisted tunneling for sub-bandgap light detection in silicon PN-doped waveguides

Jong-Bum You, Hyeokbin Kwon, Jonghoon Kim, Hyo-Hoon Park, and Kyoungsik Yu
Opt. Express 25(4) 4284-4297 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  2. T. Markvart and L. Castañer, Practical Handbook of Photovoltaics: Fundamentals and Applications (Elsevier, 2003).
  3. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14(11), 3001–3008 (1997).
    [Crossref]
  4. T. Gao, E. Stevens, J. K. Lee, and P. W. Leu, “Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping,” Opt. Lett. 39(16), 4647–4650 (2014).
    [Crossref] [PubMed]
  5. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
    [Crossref]
  6. J. C. Bose, “On the influence of the thickness of air-space on total reflection of electric radiation,” Proc. R. Soc. Lond. 62(1), 300–310 (1897).
    [Crossref]
  7. R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, “Analogies between electron and photon tunneling: a proposed experiment to measure photon tunneling times,” Physica B 175(1–3), 257–262 (1991).
    [Crossref]
  8. H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, 1985).
  9. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
    [Crossref]
  10. H. Kuhn, D. Möbius, and H. Bücher, “Spectroscopy of monolayer assemblies,” in Techniques of Chemistry, A. Weissberger, and B. W. Rossiter, eds. (Wiley, 1972), Chap. VII.
  11. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (NorthHolland, 1974), Vol. 12, Chap. 4.
  12. L. Danos, R. Greef, and T. Markvart, “Efficient fluorescence quenching near crystalline silicon from Langmuir-Blodgett dye films,” Thin Solid Films 516(20), 7251–7255 (2008).
    [Crossref]
  13. L. Danos and T. Markvart, “Excitation energy transfer rate from Langmuir Blodgett (LB) dye monolayers to silicon: Effect of aggregate formation,” Chem. Phys. Lett. 490(4–6), 194–199 (2010).
    [Crossref]
  14. L. Fang, N. Alderman, L. Danos, and T. Markvart, “Silicon sensitization using light harvesting layers,” Mater. Res. Innov. 18(7), 494–499 (2014).
    [Crossref]
  15. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [Crossref]

2014 (2)

T. Gao, E. Stevens, J. K. Lee, and P. W. Leu, “Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping,” Opt. Lett. 39(16), 4647–4650 (2014).
[Crossref] [PubMed]

L. Fang, N. Alderman, L. Danos, and T. Markvart, “Silicon sensitization using light harvesting layers,” Mater. Res. Innov. 18(7), 494–499 (2014).
[Crossref]

2010 (1)

L. Danos and T. Markvart, “Excitation energy transfer rate from Langmuir Blodgett (LB) dye monolayers to silicon: Effect of aggregate formation,” Chem. Phys. Lett. 490(4–6), 194–199 (2010).
[Crossref]

2008 (1)

L. Danos, R. Greef, and T. Markvart, “Efficient fluorescence quenching near crystalline silicon from Langmuir-Blodgett dye films,” Thin Solid Films 516(20), 7251–7255 (2008).
[Crossref]

1997 (1)

1991 (1)

R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, “Analogies between electron and photon tunneling: a proposed experiment to measure photon tunneling times,” Physica B 175(1–3), 257–262 (1991).
[Crossref]

1986 (1)

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

1982 (1)

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

1897 (1)

J. C. Bose, “On the influence of the thickness of air-space on total reflection of electric radiation,” Proc. R. Soc. Lond. 62(1), 300–310 (1897).
[Crossref]

Alderman, N.

L. Fang, N. Alderman, L. Danos, and T. Markvart, “Silicon sensitization using light harvesting layers,” Mater. Res. Innov. 18(7), 494–499 (2014).
[Crossref]

Bose, J. C.

J. C. Bose, “On the influence of the thickness of air-space on total reflection of electric radiation,” Proc. R. Soc. Lond. 62(1), 300–310 (1897).
[Crossref]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

Chiao, R. Y.

R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, “Analogies between electron and photon tunneling: a proposed experiment to measure photon tunneling times,” Physica B 175(1–3), 257–262 (1991).
[Crossref]

Danos, L.

L. Fang, N. Alderman, L. Danos, and T. Markvart, “Silicon sensitization using light harvesting layers,” Mater. Res. Innov. 18(7), 494–499 (2014).
[Crossref]

L. Danos and T. Markvart, “Excitation energy transfer rate from Langmuir Blodgett (LB) dye monolayers to silicon: Effect of aggregate formation,” Chem. Phys. Lett. 490(4–6), 194–199 (2010).
[Crossref]

L. Danos, R. Greef, and T. Markvart, “Efficient fluorescence quenching near crystalline silicon from Langmuir-Blodgett dye films,” Thin Solid Films 516(20), 7251–7255 (2008).
[Crossref]

Fang, L.

L. Fang, N. Alderman, L. Danos, and T. Markvart, “Silicon sensitization using light harvesting layers,” Mater. Res. Innov. 18(7), 494–499 (2014).
[Crossref]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Gao, T.

Greef, R.

L. Danos, R. Greef, and T. Markvart, “Efficient fluorescence quenching near crystalline silicon from Langmuir-Blodgett dye films,” Thin Solid Films 516(20), 7251–7255 (2008).
[Crossref]

Hall, D. G.

Hawley, D.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Kwiat, P. G.

R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, “Analogies between electron and photon tunneling: a proposed experiment to measure photon tunneling times,” Physica B 175(1–3), 257–262 (1991).
[Crossref]

Lee, J. K.

Leu, P. W.

Markvart, T.

L. Fang, N. Alderman, L. Danos, and T. Markvart, “Silicon sensitization using light harvesting layers,” Mater. Res. Innov. 18(7), 494–499 (2014).
[Crossref]

L. Danos and T. Markvart, “Excitation energy transfer rate from Langmuir Blodgett (LB) dye monolayers to silicon: Effect of aggregate formation,” Chem. Phys. Lett. 490(4–6), 194–199 (2010).
[Crossref]

L. Danos, R. Greef, and T. Markvart, “Efficient fluorescence quenching near crystalline silicon from Langmuir-Blodgett dye films,” Thin Solid Films 516(20), 7251–7255 (2008).
[Crossref]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

Roy, R.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

Steinberg, A. M.

R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, “Analogies between electron and photon tunneling: a proposed experiment to measure photon tunneling times,” Physica B 175(1–3), 257–262 (1991).
[Crossref]

Stevens, E.

Stuart, H. R.

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Yablonovitch, E.

Yu, A. W.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Zhu, S.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[Crossref]

Am. J. Phys. (1)

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Chem. Phys. Lett. (1)

L. Danos and T. Markvart, “Excitation energy transfer rate from Langmuir Blodgett (LB) dye monolayers to silicon: Effect of aggregate formation,” Chem. Phys. Lett. 490(4–6), 194–199 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Mater. Res. Innov. (1)

L. Fang, N. Alderman, L. Danos, and T. Markvart, “Silicon sensitization using light harvesting layers,” Mater. Res. Innov. 18(7), 494–499 (2014).
[Crossref]

Opt. Lett. (1)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Physica B (1)

R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, “Analogies between electron and photon tunneling: a proposed experiment to measure photon tunneling times,” Physica B 175(1–3), 257–262 (1991).
[Crossref]

Proc. R. Soc. Lond. (1)

J. C. Bose, “On the influence of the thickness of air-space on total reflection of electric radiation,” Proc. R. Soc. Lond. 62(1), 300–310 (1897).
[Crossref]

Thin Solid Films (1)

L. Danos, R. Greef, and T. Markvart, “Efficient fluorescence quenching near crystalline silicon from Langmuir-Blodgett dye films,” Thin Solid Films 516(20), 7251–7255 (2008).
[Crossref]

Other (4)

H. Kuhn, D. Möbius, and H. Bücher, “Spectroscopy of monolayer assemblies,” in Techniques of Chemistry, A. Weissberger, and B. W. Rossiter, eds. (Wiley, 1972), Chap. VII.

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (NorthHolland, 1974), Vol. 12, Chap. 4.

H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, 1985).

T. Markvart and L. Castañer, Practical Handbook of Photovoltaics: Fundamentals and Applications (Elsevier, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Quantum tunneling through a potential barrier (b) Photon tunneling through an air gap between two prisms (c) Photon tunneling into thin silicon film.
Fig. 2
Fig. 2 Fluorescence lifetime versus distance to related substrate.
Fig. 3
Fig. 3 Comparison of observed and modeled photon tunneling rates.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

γ p t = 2 π 2 k x , k y | μ · E k | 2 δ ( ω ω k )
ε 0 ε r | E k | 2 d V = ω / 2
κ = 2 k 2 z t 4 ϕ 21 = 2 m π
γ p t = A 2 cos 2 ( θ ) 0 d k ρ k ρ | μ | 2 | E k | 2 δ ( ω ω k )
cos 2 ( θ ) = 1 4 π d Ω cos 2 ( θ )
γ p t = A 2 cos 2 ( θ ) | μ | 2 | E k | 2 k ρ ( k ρ ω ) κ = c o n s t
( k ρ ω ) κ = c o n s t = ( κ ω ) k ρ = c o n s t ( κ k ρ ) ω = c o n s t
γ p t = γ 0 cos 2 ( θ ) 3 π k 1 | k 1 z | k 2 z 2 ( k 2 2 k 1 2 ) ( t | k 1 z | + 2 ) exp ( 2 | k 1 z | d )

Metrics