Abstract

We investigated the microscopic mechanism underlying the double-state lasing behavior (simultaneous lasing at the ground state [GS] and excited state [ES]) in InAs/GaAs quantum dot (QD) laser diodes. The ES and GS lasing processes that contributed to double-state lasing were examined experimentally and theoretically. Experiments were conducted in which spontaneous emission from a window of a QD laser diode was examined under lasing conditions, and numerical simulations were performed using a coupled rate equation model of the QD microstates. The findings showed that, when carrier relaxation from the ES to the GS was sufficiently slow, double-state lasing occurred. Additionally, ES lasing was found to arise not from the QD group undergoing GS lasing, but rather from another QD group in which the states were lower in energy and outside of the homogeneous bandwidth.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes

Heming Huang, Lyu-Chih Lin, Chih-Ying Chen, Dejan Arsenijević, Dieter Bimberg, Fan-Yi Lin, and Frédéric Grillot
Opt. Express 26(2) 1743-1751 (2018)

Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm

Wei-Sheng Liu, Hsin-Lun Tseng, and Po-Chen Kuo
Opt. Express 22(16) 18860-18869 (2014)

Ground-state lasing in high-power InAs/GaAs quantum dots-in-a-well laser using active multimode interference structure

Yuanbing Cheng, Jian Wu, Lingjuan Zhao, Xianshu Luo, and Qi Jie Wang
Opt. Lett. 40(1) 69-72 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  2. H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
    [Crossref]
  3. M. Sugawara and M. Usami, “Quantum dot devices handing the heat,” Nat. Photonics 3(1), 30–31 (2009).
    [Crossref]
  4. N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
    [Crossref]
  5. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
    [Crossref]
  6. P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
    [Crossref]
  7. K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
    [Crossref] [PubMed]
  8. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
    [Crossref]
  9. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
    [Crossref]
  10. J. Lee and D. Lee, “Double-state lasing from semiconductor quantum dot laser diodes caused by slow carrier relaxation,” J. Korean Phys. Soc. 58(2), 239–242 (2011).
    [Crossref]
  11. S. L. Chuang, J. O’Gorman, and A. F. J. Levi, “Amplified spontaneous emission and carrier pinning in laser diodes,” IEEE J. Quantum Electron. 29(6), 1631–1639 (1993).
    [Crossref]
  12. I. O’Driscoll, P. Blood, and P. M. Smowton, “Random population of quantum dots in InAs-GaAs laser structures,” IEEE J. Quantum Electron. 46(4), 525–532 (2010).
    [Crossref]
  13. V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102(11), 112101 (2013).
    [Crossref]
  14. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, “Static gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Express 16(11), 8269–8279 (2008).
    [Crossref] [PubMed]
  15. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
    [Crossref]
  16. S. L. Chuang, Physics of Photonic Devices (Wiley, 2009).

2013 (1)

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102(11), 112101 (2013).
[Crossref]

2011 (1)

J. Lee and D. Lee, “Double-state lasing from semiconductor quantum dot laser diodes caused by slow carrier relaxation,” J. Korean Phys. Soc. 58(2), 239–242 (2011).
[Crossref]

2010 (2)

I. O’Driscoll, P. Blood, and P. M. Smowton, “Random population of quantum dots in InAs-GaAs laser structures,” IEEE J. Quantum Electron. 46(4), 525–532 (2010).
[Crossref]

K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
[Crossref] [PubMed]

2009 (2)

M. Sugawara and M. Usami, “Quantum dot devices handing the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[Crossref]

2008 (1)

2007 (1)

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[Crossref]

2005 (2)

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

2004 (1)

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

2003 (1)

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

2000 (1)

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

1993 (1)

S. L. Chuang, J. O’Gorman, and A. F. J. Levi, “Amplified spontaneous emission and carrier pinning in laser diodes,” IEEE J. Quantum Electron. 29(6), 1631–1639 (1993).
[Crossref]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Akiyama, T.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

Arakawa, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Badcock, T. J.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Beanland, R.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Bimberg, D.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[Crossref]

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, “Static gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Express 16(11), 8269–8279 (2008).
[Crossref] [PubMed]

Blood, P.

I. O’Driscoll, P. Blood, and P. M. Smowton, “Random population of quantum dots in InAs-GaAs laser structures,” IEEE J. Quantum Electron. 46(4), 525–532 (2010).
[Crossref]

Capua, A.

Cataluna, M. A.

Chen, J. X.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Chuang, S. L.

S. L. Chuang, J. O’Gorman, and A. F. J. Levi, “Amplified spontaneous emission and carrier pinning in laser diodes,” IEEE J. Quantum Electron. 29(6), 1631–1639 (1993).
[Crossref]

David, J. P. R.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

Eisenstein, G.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[Crossref]

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, “Static gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Express 16(11), 8269–8279 (2008).
[Crossref] [PubMed]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Fedorova, K. A.

Fiore, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Fuchs, B.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Groom, K. M.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Gutiérrez, M.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Hatori, N.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

Hopkinson, M.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Ishida, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

Jang, J. W.

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[Crossref]

Jeong, W. G.

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[Crossref]

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Kim, J.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[Crossref]

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, “Static gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Express 16(11), 8269–8279 (2008).
[Crossref] [PubMed]

Kim, M. D.

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[Crossref]

Kim, N. J.

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[Crossref]

Korenev, V. V.

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102(11), 112101 (2013).
[Crossref]

Kovsh, A. R.

Krestnikov, I.

Krestnikov, I. L.

Kuramata, A.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Laemmlin, M.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[Crossref]

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, “Static gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Express 16(11), 8269–8279 (2008).
[Crossref] [PubMed]

Lee, D.

J. Lee and D. Lee, “Double-state lasing from semiconductor quantum dot laser diodes caused by slow carrier relaxation,” J. Korean Phys. Soc. 58(2), 239–242 (2011).
[Crossref]

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[Crossref]

Lee, J.

J. Lee and D. Lee, “Double-state lasing from semiconductor quantum dot laser diodes caused by slow carrier relaxation,” J. Korean Phys. Soc. 58(2), 239–242 (2011).
[Crossref]

Lester, L. F.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Levi, A. F. J.

S. L. Chuang, J. O’Gorman, and A. F. J. Levi, “Amplified spontaneous emission and carrier pinning in laser diodes,” IEEE J. Quantum Electron. 29(6), 1631–1639 (1993).
[Crossref]

Li, H.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Liebich, S.

Liu, G. T.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Liu, H. Y.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Livshits, D.

Malloy, K. J.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Markus, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Maximov, M. V.

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102(11), 112101 (2013).
[Crossref]

Meuer, C.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[Crossref]

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, “Static gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Express 16(11), 8269–8279 (2008).
[Crossref] [PubMed]

Mikhrin, S. S.

Mowbray, D. J.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Nakata, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

Newell, T. C.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Ng, J. S.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

O’Driscoll, I.

I. O’Driscoll, P. Blood, and P. M. Smowton, “Random population of quantum dots in InAs-GaAs laser structures,” IEEE J. Quantum Electron. 46(4), 525–532 (2010).
[Crossref]

O’Gorman, J.

S. L. Chuang, J. O’Gorman, and A. F. J. Levi, “Amplified spontaneous emission and carrier pinning in laser diodes,” IEEE J. Quantum Electron. 29(6), 1631–1639 (1993).
[Crossref]

Oh, J. M.

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[Crossref]

Omelchenko, A. V.

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102(11), 112101 (2013).
[Crossref]

Otsubo, K.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

Paranthoën, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Platz, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Pyun, S. H.

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[Crossref]

Rafailov, E. U.

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Savelyev, A. V.

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102(11), 112101 (2013).
[Crossref]

Sellers, I. R.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Skolnick, M. S.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

Smowton, P. M.

I. O’Driscoll, P. Blood, and P. M. Smowton, “Random population of quantum dots in InAs-GaAs laser structures,” IEEE J. Quantum Electron. 46(4), 525–532 (2010).
[Crossref]

Stintz, A.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Sudo, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Sugawara, M.

M. Sugawara and M. Usami, “Quantum dot devices handing the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

Usami, M.

M. Sugawara and M. Usami, “Quantum dot devices handing the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

Varangis, P. M.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

Zhukov, A. E.

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102(11), 112101 (2013).
[Crossref]

Appl. Phys. Lett. (5)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutiérrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704–706 (2004).
[Crossref]

N. J. Kim, J. M. Oh, M. D. Kim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Gain characteristics of InAs / InGaAsP quantum dot semiconductor optical amplifiers at 1.5 μm,” Appl. Phys. Lett. 90(24), 241108 (2007).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102(11), 112101 (2013).
[Crossref]

Electron. Lett. (1)

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[Crossref]

IEEE J. Quantum Electron. (3)

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[Crossref]

S. L. Chuang, J. O’Gorman, and A. F. J. Levi, “Amplified spontaneous emission and carrier pinning in laser diodes,” IEEE J. Quantum Electron. 29(6), 1631–1639 (1993).
[Crossref]

I. O’Driscoll, P. Blood, and P. M. Smowton, “Random population of quantum dots in InAs-GaAs laser structures,” IEEE J. Quantum Electron. 46(4), 525–532 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

J. Appl. Phys. (1)

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[Crossref]

J. Korean Phys. Soc. (1)

J. Lee and D. Lee, “Double-state lasing from semiconductor quantum dot laser diodes caused by slow carrier relaxation,” J. Korean Phys. Soc. 58(2), 239–242 (2011).
[Crossref]

Nat. Photonics (1)

M. Sugawara and M. Usami, “Quantum dot devices handing the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

Opt. Express (2)

Other (1)

S. L. Chuang, Physics of Photonic Devices (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram showing a ridge waveguide laser diode with three windows on top. (b) Scanning electron microscopy image of a window structure of diameter 2.5 μm. The top gold layer was removed from the window by focused ion beam etching.
Fig. 2
Fig. 2 Light intensity vs. current density curves before and after window fabrication on the QD LD.
Fig. 3
Fig. 3 (a) ASE and lasing spectra measured at a facet of the QD LD. (b) Spontaneous emission spectra measured from the window structure on the same QD LD.
Fig. 4
Fig. 4 Two possible mechanisms underlying double-state lasing: (a) Simultaneous stimulated emission from the GS and the ES in a single QD. (b) Stimulated emission from the GS in one QD and stimulated emission from the ES in another QD. Both processes are expected to yield indistinguishable macroscopic double-state lasing behavior.
Fig. 5
Fig. 5 (a) The coupled rate equations were applied to an interband transition model of the QDs. (b) Inhomogeneous distribution of the QDs, together with the index for the carrier and photon dynamics [15].
Fig. 6
Fig. 6 (a) Calculated spontaneous emission spectra, collected from the window. (b) Calculated lasing spectra, collected from a laser facet.
Fig. 7
Fig. 7 (a) Calculated results obtained from (a) the spontaneous emission spectra, collected from the window, and (b) the lasing spectra collected from a laser facet, as a function of the carrier relaxation time from the ES to the GS.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d n w dt = I e + j n u,j τ uw,j j n w τ wu G j ( 1 n u,j N u,j ) n w τ r
d n u,j dt = n w τ wu G j ( 1 n u,j N u,j ) n u,j τ uw,j + n e,j τ eu,j ( 1 n u,j N u,j ) n u,j τ ue ( 1 n e,j N e,j ) + n g,j τ gu,j ( 1 n u,j N u,j ) n u,j τ ug ( 1 n g,j N g,j ) n u,j τ r
d n e,j dt = n u,j τ ue ( 1 n e,j N e,j ) n e,j τ eu,j ( 1 n u,j N u,j )+ n g,j τ ge,j ( 1 n e,j N e,j ) n e,j τ eg ( 1 n g,j N g,j ) n e,j τ r k Γ g k,j es P k ω k ( 2 n e,j N e,j 1 )
d n g,j dt = n u,j τ ug ( 1 n g,j N g,j ) n g,j τ gu,j ( 1 n u,j N u,j )+ n e,j τ eg ( 1 n g,j N g,j ) n g,j τ ge,j ( 1 n e,j N e,j ) n g,j τ r k Γ g k,j gs P k ω k ( 2 n g,j N g,j 1 )
d P k dt = P k τ p + j [ Γ P k { g g,j ( 2 n g,j N g,j 1 )+ g e,j ( 2 n e,j N e,j 1 ) }+β( n e,j τ r + n g,j τ r ) ]
d P sp,k dt = j β w ( n g,j τ r + n e,j τ r )

Metrics