Abstract

In this paper, we propose dynamically tunable plasmon induced transparency (PIT) in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate by shifting the Fermi energy level of the graphene. Two different methods are employed to obtain the PIT effect: one is based on the direct destructive interference between a radiative state and a dark state, the other is based on the indirect coupling through a graphene nanoribbon waveguide. Our numerical results reveal that high tunability in the PIT transparency window can be obtained by altering the Fermi energy levels of the graphene rectangular resonators. Moreover, double PITs are also numerically predicted in this ultracompact structure, comprising series of graphene rectangular resonators. Compared with previously proposed graphene-based PIT effects, our proposed scheme is much easier to design and fabricate. This work not only paves a new way towards the realization of graphene-based integrated nanophotonic devices, but also has important applications in multi-channel-selective filters, sensors, and slow light.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable plasmon-induced absorption in an integrated graphene nanoribbon side-coupled waveguide

Qi Lin, Xiang Zhai, Yi Su, Haiyu Meng, and Lingling Wang
Appl. Opt. 56(34) 9536-9541 (2017)

Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial

Hui Xu, Hongjian Li, Zhihui He, Zhiquan Chen, Mingfei Zheng, and Mingzhuo Zhao
Opt. Express 25(17) 20780-20790 (2017)

Tunable multispectral plasmon induced transparency based on graphene metamaterials

Chen Sun, Jiangnan Si, Zhewei Dong, and Xiaoxu Deng
Opt. Express 24(11) 11466-11474 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  2. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  3. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  4. X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
    [Crossref] [PubMed]
  5. Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
    [Crossref] [PubMed]
  6. M. Miyata, J. Hirohata, Y. Nagasaki, and J. Takahara, “Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling,” Opt. Express 22(10), 11399–11406 (2014).
    [Crossref] [PubMed]
  7. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
    [Crossref] [PubMed]
  8. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
    [Crossref]
  9. X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system,” J. Phys. D Appl. Phys. 48(23), 235102 (2015).
    [Crossref]
  10. T. Wang, Y. Zhang, Z. Hong, and Z. Han, “Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators,” Opt. Express 22(18), 21529–21534 (2014).
    [Crossref] [PubMed]
  11. G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
    [Crossref] [PubMed]
  12. Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
    [Crossref]
  13. Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
    [Crossref] [PubMed]
  14. J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
    [Crossref]
  15. Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).
    [Crossref]
  16. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  17. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  18. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  19. F. Liu and E. Cubukcu, “Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons,” Phys. Rev. B 88(11), 115439 (2013).
    [Crossref]
  20. X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
    [Crossref] [PubMed]
  21. H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
    [Crossref]
  22. C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Perot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
    [Crossref]
  23. L. Wang, W. Cai, W. Luo, Z. Ma, C. Du, X. Zhang, and J. Xu, “Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs,” Opt. Express 22(26), 32450–32456 (2014).
    [Crossref] [PubMed]
  24. C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
    [Crossref] [PubMed]
  25. A. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. Lett. 84, 161407 (2011).
  26. X. Zhu, W. Yan, N. A. Mortensen, and S. Xiao, “Bends and splitters in graphene nanoribbon waveguides,” Opt. Express 21(3), 3486–3491 (2013).
    [Crossref] [PubMed]
  27. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
    [Crossref] [PubMed]
  28. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
    [Crossref] [PubMed]
  29. Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
    [Crossref]
  30. B. Zhu, G. Ren, Y. Gao, B. Wu, Q. Wang, C. Wan, and S. Jian, “Graphene plasmons isolator based on non-reciprocal coupling,” Opt. Express 23(12), 16071–16083 (2015).
    [Crossref] [PubMed]
  31. H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
    [Crossref]
  32. J. Wang, W. Lu, X. Li, Z. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
    [Crossref]
  33. L. Zhang, J. Yang, X. Fu, and M. Zhang, “Graphene disk as an ultracompact ring resonator based on edge propagating plasmons,” Appl. Phys. Lett. 103(16), 163114 (2013).
    [Crossref]
  34. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
    [Crossref] [PubMed]
  35. E. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
  36. T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 8443 (2015).
    [PubMed]
  37. L. Wang, W. Li, and X. Jiang, “Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide,” Opt. Lett. 40(10), 2325–2328 (2015).
    [Crossref] [PubMed]
  38. X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).
  39. L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, “Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices,” ACS Nano 9(4), 3428–3435 (2015).
    [Crossref] [PubMed]
  40. Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
    [Crossref] [PubMed]
  41. Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
    [Crossref] [PubMed]
  42. J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
    [Crossref] [PubMed]

2015 (9)

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
[Crossref] [PubMed]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system,” J. Phys. D Appl. Phys. 48(23), 235102 (2015).
[Crossref]

C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
[Crossref] [PubMed]

B. Zhu, G. Ren, Y. Gao, B. Wu, Q. Wang, C. Wan, and S. Jian, “Graphene plasmons isolator based on non-reciprocal coupling,” Opt. Express 23(12), 16071–16083 (2015).
[Crossref] [PubMed]

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 8443 (2015).
[PubMed]

L. Wang, W. Li, and X. Jiang, “Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide,” Opt. Lett. 40(10), 2325–2328 (2015).
[Crossref] [PubMed]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).

L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, “Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices,” ACS Nano 9(4), 3428–3435 (2015).
[Crossref] [PubMed]

Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
[Crossref] [PubMed]

2014 (9)

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

J. Wang, W. Lu, X. Li, Z. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
[Crossref]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Perot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
[Crossref]

L. Wang, W. Cai, W. Luo, Z. Ma, C. Du, X. Zhang, and J. Xu, “Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs,” Opt. Express 22(26), 32450–32456 (2014).
[Crossref] [PubMed]

T. Wang, Y. Zhang, Z. Hong, and Z. Han, “Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators,” Opt. Express 22(18), 21529–21534 (2014).
[Crossref] [PubMed]

Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
[Crossref] [PubMed]

M. Miyata, J. Hirohata, Y. Nagasaki, and J. Takahara, “Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling,” Opt. Express 22(10), 11399–11406 (2014).
[Crossref] [PubMed]

2013 (11)

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[Crossref] [PubMed]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).
[Crossref]

F. Liu and E. Cubukcu, “Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons,” Phys. Rev. B 88(11), 115439 (2013).
[Crossref]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

X. Zhu, W. Yan, N. A. Mortensen, and S. Xiao, “Bends and splitters in graphene nanoribbon waveguides,” Opt. Express 21(3), 3486–3491 (2013).
[Crossref] [PubMed]

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

L. Zhang, J. Yang, X. Fu, and M. Zhang, “Graphene disk as an ultracompact ring resonator based on edge propagating plasmons,” Appl. Phys. Lett. 103(16), 163114 (2013).
[Crossref]

2012 (3)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

2011 (5)

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

A. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. Lett. 84, 161407 (2011).

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

2010 (1)

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

2009 (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Atanackovic, P.

Bai, W.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Baringhaus, J.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Berger, C.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Bian, Z.

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Cai, L.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Cai, W.

L. Wang, W. Cai, W. Luo, Z. Ma, C. Du, X. Zhang, and J. Xu, “Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs,” Opt. Express 22(26), 32450–32456 (2014).
[Crossref] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Cao, G.

Chai, Z.

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).
[Crossref]

Chen, H.

Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

Chen, L.

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 8443 (2015).
[PubMed]

Chen, S.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Cheng, H.

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Conrad, E. H.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Cubukcu, E.

F. Liu and E. Cubukcu, “Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons,” Phys. Rev. B 88(11), 115439 (2013).
[Crossref]

Cui, Y.

Dai, Y.

Daniels, C.

Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
[Crossref] [PubMed]

de Heer, W. A.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Dekker, C.

L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, “Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices,” ACS Nano 9(4), 3428–3435 (2015).
[Crossref] [PubMed]

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Drndic, M.

Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
[Crossref] [PubMed]

Du, C.

Duan, X.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Dunin-Borkowski, R. E.

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Duvall, S. G.

Edler, F.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Eggleton, B. J.

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Fu, X.

L. Zhang, J. Yang, X. Fu, and M. Zhang, “Graphene disk as an ultracompact ring resonator based on edge propagating plasmons,” Appl. Phys. Lett. 103(16), 163114 (2013).
[Crossref]

Fu, Y.

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[Crossref] [PubMed]

Gan, Q.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Gao, Y.

García de Abajo, F. J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Garcia-Vidal, F.

A. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. Lett. 84, 161407 (2011).

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gómez-Díaz, J. S.

Gong, Q.

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).
[Crossref]

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[Crossref] [PubMed]

Grigorenko, A.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grillet, C.

Gu, J.

Guinea, F.

A. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. Lett. 84, 161407 (2011).

Guo, J.

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Perot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
[Crossref]

Han, D.

Han, J.

Han, X.

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system,” J. Phys. D Appl. Phys. 48(23), 235102 (2015).
[Crossref]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).

Han, Z.

He, M.

Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
[Crossref]

He, Y.

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system,” J. Phys. D Appl. Phys. 48(23), 235102 (2015).
[Crossref]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).

He, Z.

Heerema, S. J.

L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, “Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices,” ACS Nano 9(4), 3428–3435 (2015).
[Crossref] [PubMed]

Hirohata, J.

Hong, S. J.

Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
[Crossref] [PubMed]

Hong, Z.

Houben, L.

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Hu, X.

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[Crossref] [PubMed]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).
[Crossref]

Huang, R.

Huang, Z.

Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Hudson, D.

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jackson, S. D.

Jian, S.

Jiang, X.

Jiang, Z.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Johnson, A. T. C.

Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
[Crossref] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Koppens, F. H. L.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Lai, G.

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Li, A. P.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Li, B.

Li, F.

Li, H.

Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
[Crossref] [PubMed]

Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Li, W.

Li, X.

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 8443 (2015).
[PubMed]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system,” J. Phys. D Appl. Phys. 48(23), 235102 (2015).
[Crossref]

J. Wang, W. Lu, X. Li, Z. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Li, Z.

Liang, R.

Liu, B.

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system,” J. Phys. D Appl. Phys. 48(23), 235102 (2015).
[Crossref]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).

Liu, F.

F. Liu and E. Cubukcu, “Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons,” Phys. Rev. B 88(11), 115439 (2013).
[Crossref]

Liu, J.

Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, X.

C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
[Crossref] [PubMed]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Perot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
[Crossref]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Lu, H.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Lu, W.

J. Wang, W. Lu, X. Li, Z. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Luo, W.

Ma, Y.

Ma, Z.

Madden, S. J.

Magi, E.

Malladi, S. K.

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Mao, D.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Martin-Moreno, L.

A. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. Lett. 84, 161407 (2011).

Meunier, V.

Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
[Crossref] [PubMed]

Miyata, M.

Moghe, Y.

Mortensen, N. A.

Moss, D. J.

Nagasaki, Y.

Ni, Z.

J. Wang, W. Lu, X. Li, Z. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Nikitin, A.

A. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. Lett. 84, 161407 (2011).

Novoselov, K.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

O’Brien, C.

Park, Y. W.

Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
[Crossref] [PubMed]

Perruisseau-Carrier, J.

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Polini, M.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Qi, Z. J.

Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
[Crossref] [PubMed]

Qiu, T.

J. Wang, W. Lu, X. Li, Z. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Read, A.

Ren, G.

Ruan, M.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Schneider, G. F.

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Shi, X.

Sicot, M.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Singh, R.

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Song, G.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Sun, B.

Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Sun, Y.

Takahara, J.

Taleb-Ibrahimi, A.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Tang, J.

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators,” J. Lightwave Technol. 33(14), 3083–3090 (2015).

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system,” J. Phys. D Appl. Phys. 48(23), 235102 (2015).
[Crossref]

Tegenkamp, C.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Tejeda, A.

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Thongrattanasiri, S.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Tian, J.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Tian, Z.

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Vicarelli, L.

L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, “Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices,” ACS Nano 9(4), 3428–3435 (2015).
[Crossref] [PubMed]

Wan, C.

Wang, B.

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 8443 (2015).
[PubMed]

Wang, J.

J. Wang, W. Lu, X. Li, Z. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Wang, L.

L. Wang, W. Li, and X. Jiang, “Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide,” Opt. Lett. 40(10), 2325–2328 (2015).
[Crossref] [PubMed]

Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
[Crossref]

L. Wang, W. Cai, W. Luo, Z. Ma, C. Du, X. Zhang, and J. Xu, “Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs,” Opt. Express 22(26), 32450–32456 (2014).
[Crossref] [PubMed]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Wang, Q.

Wang, T.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wu, B.

Wu, M. Y.

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Xiao, S.

Xie, B.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Xu, J.

Xu, Q.

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Xu, Y.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Yan, W.

Yang, H.

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).
[Crossref]

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[Crossref] [PubMed]

Yang, J.

L. Zhang, J. Yang, X. Fu, and M. Zhang, “Graphene disk as an ultracompact ring resonator based on edge propagating plasmons,” Appl. Phys. Lett. 103(16), 163114 (2013).
[Crossref]

Yi, L.

Yu, P.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Yu, Z.

Yucelen, E.

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Zandbergen, H. W.

L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, “Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices,” ACS Nano 9(4), 3428–3435 (2015).
[Crossref] [PubMed]

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Zeng, C.

C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
[Crossref] [PubMed]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Perot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
[Crossref]

Zhai, X.

Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Zhan, G.

Zhan, S.

Zhang, F.

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).
[Crossref]

Zhang, J.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Zhang, L.

Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

L. Zhang, J. Yang, X. Fu, and M. Zhang, “Graphene disk as an ultracompact ring resonator based on edge propagating plasmons,” Appl. Phys. Lett. 103(16), 163114 (2013).
[Crossref]

Zhang, M.

L. Zhang, J. Yang, X. Fu, and M. Zhang, “Graphene disk as an ultracompact ring resonator based on edge propagating plasmons,” Appl. Phys. Lett. 103(16), 163114 (2013).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 8443 (2015).
[PubMed]

Zhang, W.

Zhang, X.

Zhang, Y.

Zhang, Z.

Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

Zhao, R.

Zhu, B.

Zhu, X.

Zhu, Y.

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).
[Crossref]

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[Crossref] [PubMed]

Zi, J.

ACS Nano (4)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, “Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices,” ACS Nano 9(4), 3428–3435 (2015).
[Crossref] [PubMed]

Q. Xu, M. Y. Wu, G. F. Schneider, L. Houben, S. K. Malladi, C. Dekker, E. Yucelen, R. E. Dunin-Borkowski, and H. W. Zandbergen, “Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature,” ACS Nano 7(2), 1566–1572 (2013).
[Crossref] [PubMed]

Z. J. Qi, C. Daniels, S. J. Hong, Y. W. Park, V. Meunier, M. Drndić, and A. T. C. Johnson, “Electronic transport of recrystallized freestanding graphene nanoribbons,” ACS Nano 9(4), 3510–3520 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Perot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).
[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

L. Zhang, J. Yang, X. Fu, and M. Zhang, “Graphene disk as an ultracompact ring resonator based on edge propagating plasmons,” Appl. Phys. Lett. 103(16), 163114 (2013).
[Crossref]

Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102(20), 201119 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

Z. Huang, L. Wang, B. Sun, M. He, J. Liu, H. Li, and X. Zhai, “A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface,” J. Opt. 16(10), 105004 (2014).
[Crossref]

J. Phys. D Appl. Phys. (2)

J. Wang, W. Lu, X. Li, Z. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

X. Han, T. Wang, X. Li, B. Liu, Y. He, and J. Tang, “Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system,” J. Phys. D Appl. Phys. 48(23), 235102 (2015).
[Crossref]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Nature (1)

J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, “Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506(7488), 349–354 (2014).
[Crossref] [PubMed]

Opt. Express (11)

T. Wang, Y. Zhang, Z. Hong, and Z. Han, “Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators,” Opt. Express 22(18), 21529–21534 (2014).
[Crossref] [PubMed]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

M. Miyata, J. Hirohata, Y. Nagasaki, and J. Takahara, “Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling,” Opt. Express 22(10), 11399–11406 (2014).
[Crossref] [PubMed]

B. Zhu, G. Ren, Y. Gao, B. Wu, Q. Wang, C. Wan, and S. Jian, “Graphene plasmons isolator based on non-reciprocal coupling,” Opt. Express 23(12), 16071–16083 (2015).
[Crossref] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

X. Zhu, W. Yan, N. A. Mortensen, and S. Xiao, “Bends and splitters in graphene nanoribbon waveguides,” Opt. Express 21(3), 3486–3491 (2013).
[Crossref] [PubMed]

L. Wang, W. Cai, W. Luo, Z. Ma, C. Du, X. Zhang, and J. Xu, “Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs,” Opt. Express 22(26), 32450–32456 (2014).
[Crossref] [PubMed]

C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
[Crossref] [PubMed]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
[Crossref] [PubMed]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (1)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Phys. Rev. B (2)

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

F. Liu and E. Cubukcu, “Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons,” Phys. Rev. B 88(11), 115439 (2013).
[Crossref]

Phys. Rev. Lett. (3)

A. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. Lett. 84, 161407 (2011).

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[Crossref] [PubMed]

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5, 8443 (2015).
[PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (1)

E. Palik, Handbook of Optical Constants of Solids (Academic, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the proposed one-resonator-coupled system (a), two-resonator-coupled system (b, c) and four-resonator-coupled system (d).
Fig. 2
Fig. 2 Transmission spectrum of the proposed one-resonator-coupled structure shown in Fig. 1 (a) for different chemical potentials μc (a), lengths wa1 (b), coupling distances la1 (c), and widths da1 (d). The inset in (c) shows the magnetic field distribution of 6480 nm with other parameters are assumed to be μc = 0.40 eV, la1 = 15 nm, wa1 = 140 nm, and da1 = 20 nm.
Fig. 3
Fig. 3 (a) Transmission spectrum of the proposed two-resonator-coupled structure shown in Fig. 1 (b) with lb1 = 15 nm, lb2 = 25 nm, wb1 = wb2 = 140 nm, μb1 = 0.4 eV, μb2 = 0.41 eV. Transmission spectrum of the system for different coupling distances lb2 (b), chemical potentials μb2 (c), lateral shifts σ (d), and relaxation times of graphene (e). (f) Evolution of transmission spectrum verses τ and λ. (g)-(i) Distributions of the magnetic field corresponding to the two transmission dips and the one transmission peak represented by A, C, and B in (a).
Fig. 4
Fig. 4 (a) Transmission spectrum of the proposed two-resonator-coupled structure shown in Fig. 1 (c) with lc1 = lc2 = 15 nm, wc1 = wc2 = 140 nm, μc1 = 0.4 eV, μc2 = 0.45 eV. (b)-(c) Transmission spectrum of the system for different chemical potentials μc2 and relaxation times τ. (d)-(f) Distributions of the magnetic field corresponding to the two transmission dips and transmission peak represented by A, B, and C in (a).
Fig. 5
Fig. 5 (a) Transmission spectrum of the proposed four-resonator-coupled structure with ld1 = 15 nm, ld2 = 20 nm, μd1 = 0.38 eV, μd2 = 0.39 eV, μd3 = 0.43 eV, and μd4 = 0.44 eV. Transmission spectrum of the system when only the 1st, 2nd resonators (a2) and the 3rd, 4th resonators (a3) are placed on one side of the graphene waveguide. (b) Transmission spectrum for different relaxation times. Inset is the evolution of transmission spectrum verses τ and λ.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ g = i e 2 k B T π 2 ( ω + i τ 1 ) [ μ c k B T + 2 ln ( exp ( μ c k B T ) + 1 ) ] i e 2 4 π 2 ln [ 2 | μ c | ( ω + i τ 1 ) 2 | μ c | + ( ω + i τ 1 ) ]
ε g = 1 + i σ g η 0 k 0 d g
λ = 2 Re ( n e f f ) × L / ( m φ / π )
n e f f = 1 ( 2 η 0 σ g ) 2
T ( λ ) = 1 1 1 + [ λ λ 1 | κ 2 | 2 / ( λ λ 2 ) ] 2 / | κ 1 | 2

Metrics