Abstract

We demonstrated experimental comparison between ghost imaging and traditional non-correlated imaging under disturbance of scattering. Ghost imaging appears more robust. The quality of ghost imaging does not change much when the scattering is getting stronger, while that of traditional imaging declines dramatically. A concise model is developed to explain the superiority of ghost imaging. Due to its robustness against scattering, ghost imaging will be useful in harsh environment.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Positive influence of the scattering medium on reflective ghost imaging

Qin Fu, Yanfeng Bai, Xianwei Huang, Suqin Nan, Peiyi Xie, and Xiquan Fu
Photon. Res. 7(12) 1468-1472 (2019)

Underwater computational ghost imaging

Mingnan Le, Gao Wang, Huabin Zheng, Jianbin Liu, Yu Zhou, and Zhuo Xu
Opt. Express 25(19) 22859-22868 (2017)

Visible ghost imaging with nonvisible light

Deyang Duan, Lu Zhang, and Yunjie Xia
J. Opt. Soc. Am. A 31(4) 730-733 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref] [PubMed]
  2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  3. A. Valencia, G. Scarcelli, M. D’Angelo M, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [Crossref] [PubMed]
  4. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [Crossref] [PubMed]
  5. F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
    [Crossref]
  6. L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
    [Crossref]
  7. B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
    [Crossref]
  8. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
    [Crossref] [PubMed]
  9. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010).
    [Crossref] [PubMed]
  10. L. Basano and P. Ottonello, “A conceptual experiment on single-beam coincidence detection with pseudothermal light,” Opt. Express 15(19), 12386–12394 (2007).
    [Crossref] [PubMed]
  11. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
    [Crossref] [PubMed]
  12. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  13. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [Crossref]
  14. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
    [Crossref]
  15. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
    [Crossref]
  16. J. Liu, J. Zhu, C. Lu, and S. Huang, “High-quality quantum-imaging algorithm and experiment based on compressive sensing,” Opt. Lett. 35(8), 1206–1208 (2010).
    [Crossref]
  17. P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 033817 (2010).
    [Crossref]
  18. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
    [Crossref]
  19. A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 053832 (2010).
    [Crossref]
  20. P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
    [Crossref]
  21. W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36(3), 394–396 (2011).
    [Crossref] [PubMed]
  22. M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
    [Crossref] [PubMed]
  23. H. Li, J. Shi, Y. Zhu, and G. Zeng, “Periodic diffraction correlation imaging through strongly scattering mediums,” Appl. Phys. Lett. 103, 051901 (2013).
    [Crossref]
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  25. H. C. Hulst and H. C. Van De Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).
  26. http://www.bricem.com/?optionid=440&autoid=406

2013 (2)

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref] [PubMed]

H. Li, J. Shi, Y. Zhu, and G. Zeng, “Periodic diffraction correlation imaging through strongly scattering mediums,” Appl. Phys. Lett. 103, 051901 (2013).
[Crossref]

2012 (1)

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

2011 (3)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36(3), 394–396 (2011).
[Crossref] [PubMed]

2010 (5)

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 053832 (2010).
[Crossref]

J. Liu, J. Zhu, C. Lu, and S. Huang, “High-quality quantum-imaging algorithm and experiment based on compressive sensing,” Opt. Lett. 35(8), 1206–1208 (2010).
[Crossref]

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 033817 (2010).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

2009 (4)

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

2008 (2)

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

2007 (1)

2006 (1)

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[Crossref]

2005 (1)

A. Valencia, G. Scarcelli, M. D’Angelo M, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

2004 (1)

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

1995 (1)

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Basano, L.

L. Basano and P. Ottonello, “A conceptual experiment on single-beam coincidence detection with pseudothermal light,” Opt. Express 15(19), 12386–12394 (2007).
[Crossref] [PubMed]

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bina, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

Boyd, R. W.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 053832 (2010).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010).
[Crossref] [PubMed]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Chan, K. W. C.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010).
[Crossref] [PubMed]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

Chen, M.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Cheng, J.

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

D’Angelo M, M.

A. Valencia, G. Scarcelli, M. D’Angelo M, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

Dixon, P. B.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[Crossref]

Ferri, F.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

Gatti, A.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

Gong, W.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36(3), 394–396 (2011).
[Crossref] [PubMed]

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 033817 (2010).
[Crossref]

Han, S.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36(3), 394–396 (2011).
[Crossref] [PubMed]

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 033817 (2010).
[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

Hardy, N. D.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

Howell, J. C.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

Howland, G. A.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

Huang, S.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

Hulst, H. C.

H. C. Hulst and H. C. Van De Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

Jha, A. K.

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 053832 (2010).
[Crossref]

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Li, E.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Li, H.

H. Li, J. Shi, Y. Zhu, and G. Zeng, “Periodic diffraction correlation imaging through strongly scattering mediums,” Appl. Phys. Lett. 103, 051901 (2013).
[Crossref]

Liu, J.

Lu, C.

Lugiato, L. A.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

Magatti, D.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

Molteni, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref] [PubMed]

O’Sullivan, M. N.

O’Sullivan-Hale, C.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

Ottonello, P.

L. Basano and P. Ottonello, “A conceptual experiment on single-beam coincidence detection with pseudothermal light,” Opt. Express 15(19), 12386–12394 (2007).
[Crossref] [PubMed]

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Rodenburg, B.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

Sala, V. G.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo M, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Sergienko, A. V.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Shapiro, J. H.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Shen, X.

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 033817 (2010).
[Crossref]

Shi, J.

H. Li, J. Shi, Y. Zhu, and G. Zeng, “Periodic diffraction correlation imaging through strongly scattering mediums,” Appl. Phys. Lett. 103, 051901 (2013).
[Crossref]

Shih, Y.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo M, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Simon, D. S.

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Tyler, G. A.

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 053832 (2010).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo M, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

Van De Hulst, H. C.

H. C. Hulst and H. C. Van De Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

Wang, H.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Xu, W.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Zeng, G.

H. Li, J. Shi, Y. Zhu, and G. Zeng, “Periodic diffraction correlation imaging through strongly scattering mediums,” Appl. Phys. Lett. 103, 051901 (2013).
[Crossref]

Zhang, P.

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 033817 (2010).
[Crossref]

Zhao, C.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Zhu, J.

Zhu, Y.

H. Li, J. Shi, Y. Zhu, and G. Zeng, “Periodic diffraction correlation imaging through strongly scattering mediums,” Appl. Phys. Lett. 103, 051901 (2013).
[Crossref]

Appl. Phys. Lett. (6)

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).
[Crossref]

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

H. Li, J. Shi, Y. Zhu, and G. Zeng, “Periodic diffraction correlation imaging through strongly scattering mediums,” Appl. Phys. Lett. 103, 051901 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (7)

P. Zhang, W. Gong, X. Shen, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 033817 (2010).
[Crossref]

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 053832 (2010).
[Crossref]

P. B. Dixon, G. A. Howland, K. W. C. Chan, C. O’Sullivan-Hale, B. Rodenburg, N. D. Hardy, J. H. Shapiro, D. S. Simon, A. V. Sergienko, R. W. Boyd, and J. C. Howell, “Quantum ghost imaging through turbulence,” Phys. Rev. A 83, 051803 (2011).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).
[Crossref]

T. B. Pittman, Y. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo M, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref] [PubMed]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).
[Crossref] [PubMed]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).
[Crossref] [PubMed]

Other (3)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

H. C. Hulst and H. C. Van De Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

http://www.bricem.com/?optionid=440&autoid=406

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup for comparing GI and traditional imaging. A half wave plate and a polarized beam splitter (PBS) are employed to modify the ratio between two arms, such that both detectors can work in proper regime. Lens f1 and f2 are used to adjust parameters of the field. The effect of scattering is simulated by small particles in salt solution, inside two containers. A binary object is located between two containers. CCD2 is on the imaging plane of the object under help of lens f3, which serves as the array detector for non-correlated imaging and as the bucket detector for GI.
Fig. 2
Fig. 2 Imaging results of a double slit achieved with both methods. From set (a) to (f), the strength of scattering is increasing, where β shows the transmission ratio of the scattering media as a measure of strength of scattering. For each set, the left one is the result of GI and the right one is that of traditional non-correlated imaging.
Fig. 3
Fig. 3 MSE and SNR of the images achieved from two techniques, varying with the strength of scattering. Each point is obtained by a statistic over 5 times of imaging. It shows that the quality of non-correlated imaging declines with the scattering, while that of GI appears robust against scattering.
Fig. 4
Fig. 4 Degree of second-order coherence, with and without scattering. This shown in the right plot is normalized. When there is scattering, the peak value of degree of second-order coherence is decreased, while the magnitude of background noise is also decreased. After normalization, it can be seen that the width of the degree of second-order coherence function keeps unchanged, which is related to spatial resolution of GI. Thus, the spatial resolution of GI does not change under disturbance of scattering.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S 0 = I obj ( x ) T ( x ) d x ,
O ( x ) I ref ( x ) S 0 I ref ( x ) S 0 = I ref ( x ) I obj ( x ) [ g ( 2 ) ( x , x ) 1 ] T ( x ) d x ,
g ( 2 ) ( x , x ) = I ref ( x ) I obj ( x ) I ref ( x ) I obj ( x ) .
I ( x ) α I ( x ) + I s ( x ) ,
S = [ α I obj ( x ) + I s ( x ) ] T ( x ) d x .
I ref ( x ) I s ( x ) = I ref ( x ) I s ( x ) ,
O s ( x ) I ref ( x ) S I ref ( x ) S = α O ( x ) + I ref ( x ) I s ( x ) T ( x ) d x I ref ( x ) I s ( x ) T ( x ) d x = α O ( x )

Metrics