Abstract

Long period fiber gratings (LPGs) in a two-core hollow eccentric fiber (TCHF) have been demonstrated experimentally. Two LPGs have been fabricated into the respective core of the TCHF by a high frequency CO2 laser. The coupling characteristics in the TCHF-LPG have been studied using the coupling mode theory (CMT). The resonant peak is mainly caused by the coupling between the core mode LP01 and cladding mode LP81. The experimental results agree well with the simulation results. Furthermore, the sensing properties of the TCHF-LPG have been investigated with respect to bending, temperature and axial strain. Compared with the LPG in the single mode fiber (SMF), the experimental results indicate that the sensitivity of the TCHF-LPGs to bending curvature is low and even very small at some bending directions. In addition, TCHF-LPGs are insensitive to the axial strain while sensitive to the temperature. Therefore, the proposed TCHF-LPGs can efficiently sense the changing temperature that is independent of the strain. Moreover, the TCHF-LPGs can also be applied to two-channel filters without signal crosstalk between two cores.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber Bragg grating sensors in hollow single- and two-core eccentric fibers

Guopei Mao, Tingting Yuan, Chunying Guan, Jing Yang, Lei Chen, Zheng Zhu, Jinhui Shi, and Libo Yuan
Opt. Express 25(1) 144-150 (2017)

Bending characteristics of a long-period fiber grating in a hollow eccentric optical fiber

Xing Zhong, Chunying Guan, Guopei Mao, Jianan Fu, Yang Liu, Jinhui Shi, and Libo Yuan
Appl. Opt. 54(26) 7879-7883 (2015)

Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers

Zhifang Wu, Zhi Wang, Yan-ge Liu, Tingting Han, Shuo Li, and Huifeng Wei
Opt. Express 19(18) 17344-17349 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. W. James and R. P. Tayam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]
  2. Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,”,” J. Appl. Phys. 108(8), 081101 (2010).
    [Crossref]
  3. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
    [Crossref] [PubMed]
  4. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [Crossref]
  5. Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
    [Crossref]
  6. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber,” Opt. Lett. 29(1), 38–40 (2004).
    [Crossref] [PubMed]
  7. C. Y. Lin, G. W. Chem, and L. A. Wang, “Periodical corrugated structure for forming sampled fiber Bragg grating and long-period fiber grating with tunable coupling strength,” J. Lightwave Technol. 19(8), 1212–1220 (2001).
    [Crossref]
  8. G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
    [Crossref]
  9. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44(2), 178–182 (2005).
    [Crossref] [PubMed]
  10. T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber,” IEEE Trans. Instrum. Meas. 53(1), 130–135 (2004).
    [Crossref]
  11. L. P. Sun, J. Li, L. Jin, and B. O. Guan, “Structural microfiber long-period gratings,” Opt. Express 20(16), 18079–18084 (2012).
    [Crossref] [PubMed]
  12. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
    [Crossref] [PubMed]
  13. H. J. Patrick, “Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber,” Electron. Lett. 36(21), 1763–1764 (2000).
    [Crossref]
  14. C. Y. Guan, X. Z. Tian, S. Q. Li, X. Zhong, J. H. Shi, and L. B. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
    [Crossref]
  15. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008).
    [Crossref] [PubMed]
  16. X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
    [Crossref] [PubMed]
  17. X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
    [Crossref] [PubMed]
  18. S. Kim, G. H. Kim, K.-J. Hwang, S. D. Lim, K. Lee, S. H. Kim, and S. B. Lee, “Investigation of an arc-induced long period fiber grating inscribed in a photonic crystal fiber with two lager air holes,” J. Opt. Soc. Korea 13(4), 428–433 (2009).
    [Crossref]
  19. S. J. Liu, M. Y. Luo, and Q. Ji, “Sensing characteristics of femtosecond laser-induced long period fiber gratings by filling cladding holes in photonic crystal fiber,” J. Lightwave Technol. 32(12), 2287–2292 (2014).
    [Crossref]
  20. J. Kang, X. Y. Dong, M. C. Li, Z. X. Zhang, and S. Z. Jin, “Refraction index measurement using long period fiber grating fabricated by symmetrical-hole fiber,” in Passive Components and Fiber-Based Devices VII, P. Shum, ed., Vol. 7986 of Proceedings of SPIE-OSA (Optical Society of America, 2010), paper 79860X.
  21. Y. G. Han, G. Kim, K. Lee, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Bending sensitivity of long-period fiber gratings inscribed in holey fibers depending on an axial rotation angle,” Opt. Express 15(20), 12866–12871 (2007).
    [Crossref] [PubMed]
  22. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
    [Crossref] [PubMed]
  23. K. Stępień, M. Slowikowski, T. Tenderenda, M. Murawski, M. Szymanski, L. Szostkiewicz, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, L. R. Jaroszewicz, and T. Nasilowski, “Fiber Bragg gratings in hole-assisted multicore fiber for space division multiplexing,” Opt. Lett. 39(12), 3571–3574 (2014).
    [Crossref] [PubMed]
  24. Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
    [Crossref] [PubMed]
  25. Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
    [Crossref] [PubMed]
  26. Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18, 1783–1785 (2006).
    [Crossref]
  27. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
    [Crossref] [PubMed]
  28. H. Kogelnik, “Theory of Dielectric Waveguides” in Integrated Optics, T. Tamir, ed. (Springer-Verlag, 1979), pp.13–81.
  29. Y. Li, T. Wei, J. A. Montoya, S. V. Saini, X. Lan, X. Tang, J. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47(29), 5296–5304 (2008).
    [Crossref] [PubMed]
  30. Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
    [Crossref]
  31. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]

2015 (1)

2014 (4)

2013 (2)

C. Y. Guan, X. Z. Tian, S. Q. Li, X. Zhong, J. H. Shi, and L. B. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (3)

2009 (1)

2008 (2)

2007 (2)

2006 (2)

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18, 1783–1785 (2006).
[Crossref]

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

2005 (2)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44(2), 178–182 (2005).
[Crossref] [PubMed]

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

2004 (2)

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber,” Opt. Lett. 29(1), 38–40 (2004).
[Crossref] [PubMed]

T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber,” IEEE Trans. Instrum. Meas. 53(1), 130–135 (2004).
[Crossref]

2003 (2)

S. W. James and R. P. Tayam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (1)

H. J. Patrick, “Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber,” Electron. Lett. 36(21), 1763–1764 (2000).
[Crossref]

1999 (1)

Allsop, T.

T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber,” IEEE Trans. Instrum. Meas. 53(1), 130–135 (2004).
[Crossref]

Bartelt, H.

Becker, M.

Bennion, I.

Canning, J.

Chem, G. W.

Chen, K. P.

Chen, X.

Cho, H. S.

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18, 1783–1785 (2006).
[Crossref]

Choi, H. Y.

Dong, J.

Earthgrowl-Gould, T.

T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber,” IEEE Trans. Instrum. Meas. 53(1), 130–135 (2004).
[Crossref]

Février, S.

Gillooly, A.

T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber,” IEEE Trans. Instrum. Meas. 53(1), 130–135 (2004).
[Crossref]

Grobnic, D.

Guan, B. O.

Guan, C. Y.

C. Y. Guan, X. Z. Tian, S. Q. Li, X. Zhong, J. H. Shi, and L. B. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Han, T.

Han, Y. G.

Hirao, K.

Humbert, G.

Hwang, K.-J.

James, S. W.

S. W. James and R. P. Tayam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Jaroszewicz, L. R.

Jeong, C. H.

Jewart, C. M.

Ji, Q.

Jin, L.

Jin, W.

H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
[Crossref] [PubMed]

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Kang, H. J.

Kazansky, P. G.

Kim, G.

Kim, G. H.

Kim, S.

Kim, S. H.

Kondo, Y.

Kowal, D.

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Lan, X.

Lee, B. H.

Lee, J. H.

Lee, K.

Lee, S. B.

Lee, Y. J.

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18, 1783–1785 (2006).
[Crossref]

Li, J.

Li, S.

Li, S. Q.

C. Y. Guan, X. Z. Tian, S. Q. Li, X. Zhong, J. H. Shi, and L. B. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Li, Y.

Li, Z.

Liao, C.

Lim, S. D.

Lin, C. Y.

Liu, S.

Liu, S. J.

Liu, Y. G.

Luo, M. Y.

Malki, A.

Mergo, P.

K. Stępień, M. Slowikowski, T. Tenderenda, M. Murawski, M. Szymanski, L. Szostkiewicz, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, L. R. Jaroszewicz, and T. Nasilowski, “Fiber Bragg gratings in hole-assisted multicore fiber for space division multiplexing,” Opt. Lett. 39(12), 3571–3574 (2014).
[Crossref] [PubMed]

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Mezentsev, V.

T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber,” IEEE Trans. Instrum. Meas. 53(1), 130–135 (2004).
[Crossref]

Mihailov, S. J.

Mitsuyu, T.

Monro, T. M.

Montoya, J. A.

Murawski, M.

Nasilowski, T.

Neal, R.

T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber,” IEEE Trans. Instrum. Meas. 53(1), 130–135 (2004).
[Crossref]

Nouchi, K.

Oh, C. H.

Pagnoux, D.

Park, K. S.

Patrick, H. J.

H. J. Patrick, “Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber,” Electron. Lett. 36(21), 1763–1764 (2000).
[Crossref]

Peng, G. D.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Qu, J.

Ran, Z. L.

Rao, Y. J.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

Rothhardt, M.

Roy, P.

Saini, S. V.

Shi, J. H.

C. Y. Guan, X. Z. Tian, S. Q. Li, X. Zhong, J. H. Shi, and L. B. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Shu, X.

Slowikowski, M.

Song, S.

Statkiewicz-Barabach, G.

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Stepien, K.

Sun, L. P.

Szczurowski, M. K.

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Szostkiewicz, L.

Szymanski, M.

Tang, J.

Tang, X.

Tayam, R. P.

S. W. James and R. P. Tayam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Tenderenda, T.

Tian, X. Z.

C. Y. Guan, X. Z. Tian, S. Q. Li, X. Zhong, J. H. Shi, and L. B. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Urbanczyk, W.

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

Wang, D. N.

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Wang, L. A.

Wang, Q.

Wang, Y.

Wang, Y. P.

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,”,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

Wang, Z.

Warren-Smith, S. C.

Watanabe, M.

Webb, D. J.

T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber,” IEEE Trans. Instrum. Meas. 53(1), 130–135 (2004).
[Crossref]

Wei, H.

Wei, T.

Wu, Z.

Xiao, H.

Xuan, H.

Yang, K.

Yuan, L. B.

C. Y. Guan, X. Z. Tian, S. Q. Li, X. Zhong, J. H. Shi, and L. B. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Zhang, L.

Zhao, J.

Zhong, X.

Zhou, K.

Zhu, T.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. P. Wang, D. N. Wang, W. Jin, Y. J. Rao, and G. D. Peng, “Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber,” Appl. Phys. Lett. 89(15), 151105 (2006).
[Crossref]

Electron. Lett. (1)

H. J. Patrick, “Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber,” Electron. Lett. 36(21), 1763–1764 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. G. Han, Y. J. Lee, G. H. Kim, H. S. Cho, S. B. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Transmission characteristics of fibers corresponding to air hole size and their application,” IEEE Photonics Technol. Lett. 18, 1783–1785 (2006).
[Crossref]

G. Statkiewicz-Barabach, D. Kowal, M. K. Szczurowski, P. Mergo, and W. Urbanczyk, “Hydrostatic pressure and strain sensitivity of long period grating fabricated in polymer microstructured fiber,” IEEE Photonics Technol. Lett. 25(5), 496–499 (2013).
[Crossref]

IEEE Sens. J. (1)

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

T. Allsop, A. Gillooly, V. Mezentsev, T. Earthgrowl-Gould, R. Neal, D. J. Webb, and I. Bennion, “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber,” IEEE Trans. Instrum. Meas. 53(1), 130–135 (2004).
[Crossref]

J. Appl. Phys. (1)

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,”,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Korea (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tayam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

K. Stępień, M. Slowikowski, T. Tenderenda, M. Murawski, M. Szymanski, L. Szostkiewicz, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, L. R. Jaroszewicz, and T. Nasilowski, “Fiber Bragg gratings in hole-assisted multicore fiber for space division multiplexing,” Opt. Lett. 39(12), 3571–3574 (2014).
[Crossref] [PubMed]

H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008).
[Crossref] [PubMed]

H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
[Crossref] [PubMed]

C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 35(9), 1443–1445 (2010).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

X. Zhong, Y. Wang, C. Liao, S. Liu, J. Tang, and Q. Wang, “Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber,” Opt. Lett. 40(8), 1791–1794 (2015).
[Crossref] [PubMed]

G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Characterizations at high temperatures of long-period gratings written in germanium-free air-silica microstructure fiber,” Opt. Lett. 29(1), 38–40 (2004).
[Crossref] [PubMed]

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
[Crossref] [PubMed]

Y. G. Han, S. Song, G. H. Kim, K. Lee, S. B. Lee, J. H. Lee, C. H. Jeong, C. H. Oh, and H. J. Kang, “Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size,” Opt. Lett. 32(15), 2245–2247 (2007).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

C. Y. Guan, X. Z. Tian, S. Q. Li, X. Zhong, J. H. Shi, and L. B. Yuan, “Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber,” Sens. Actuators B Chem. 188, 768–771 (2013).
[Crossref]

Other (2)

J. Kang, X. Y. Dong, M. C. Li, Z. X. Zhang, and S. Z. Jin, “Refraction index measurement using long period fiber grating fabricated by symmetrical-hole fiber,” in Passive Components and Fiber-Based Devices VII, P. Shum, ed., Vol. 7986 of Proceedings of SPIE-OSA (Optical Society of America, 2010), paper 79860X.

H. Kogelnik, “Theory of Dielectric Waveguides” in Integrated Optics, T. Tamir, ed. (Springer-Verlag, 1979), pp.13–81.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Cross-section of the two-core hollow eccentric fiber (TCHF). (a) Sample picture and (b) its schematic diagram.
Fig. 2
Fig. 2 Schematic of the TCHF-LPG fabrication by a high-frequency CO2 laser. Insets: (a) conventional diagram of fiber grating, (b) observed lateral image of the TCHF, and (c) the exposure direction and the initial position of TCHF.
Fig. 3
Fig. 3 Transmission spectra of the two gratings in the TCHF.
Fig. 4
Fig. 4 Field distributions of LP01 modes in (a) core 1 and (b) core 2, and (c) LP81 mode. White arrows represent amplitudes of the electric field.
Fig. 5
Fig. 5 Experimental and calculated transmission spectra of the gratings in core 1 (a) and core 2 (b) for different effective index modulations.
Fig. 6
Fig. 6 (a) Measured resonant wavelength dependent on the curvature for the directions of 0°, 90°, 180°. (b) The transmission spectra in the bending direction of 180° for different curvatures.
Fig. 7
Fig. 7 Temperature sensitivities for core 1 (red points for heating and blue points for cooling) and core 2 (green points for heating).
Fig. 8
Fig. 8 (a) The shifts of two peaks of the TCHF-LPGs for different axial strains. (b) Measured resonant wavelength of the TCHF-LPGs with increasing the axial.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ kj t (z)= ω 4 dxdyΔε(x,y,z) e kt (x,y) e jt * (x,y)
κ kj t (z)= ω ε 0 nΔn 2 dxdy e kt (x,y) e jt * (x,y)
d A co dz = κ clco A cl exp(i2 δ clco z) d A cl dz =- κ clco A co exp(+i2 δ clco z)

Metrics